Saltar al contenido
Merck

The risk of recrystallization: changes to the toxicity and morphology of pyrimethamine.

Journal of pharmacy & pharmaceutical sciences : a publication of the Canadian Society for Pharmaceutical Sciences, Societe canadienne des sciences pharmaceutiques (2014-06-18)
Zak Perold, Mino R Caira, Marius Brits
RESUMEN

Pyrimethamine, an anti-malarial agent known to exhibit solid state polymorphism, may be purified by means of recrystallization. Recrystallization may alter the solid state chemistry of pharmaceuticals, which may impact the toxicity and/or manufacturability thereof. We evaluated the risks associated with the recrystallization of pyrimethamine. Pyrimethamine was recrystallized using several organic solvents. X-ray diffraction, thermal analysis, infra-red spectroscopy, microscopy, flowability -, solubility and dissolution testing as well as computational work were employed to evaluate the recrystallized products. A toxic solvatomorph of pyrimethamine (Pyr-MeOH) was found to be the product from methanol recrystallization. The elucidation of - and the elaboration on the unique characteristics of Pyr-MeOH provides the pharmaceutical industry with several means to identify Pyr-MeOH and to distinguish it from the pharmaceutically preferred anhydrous form (Pyr). Thermal methods of analysis found that the toxicity of Pyr-MeOH may be reversed by overcoming a desolvation activation energy of 148 kJ/mol. In addition it was found that recrystallization altered the morphology of Pyr. Angle of repose and tapped density determinations identified that the different morphologies of Pyr displayed differences in powder flow and compressibility behaviour and In Silico calculations were successful in rendering morphologies resembling that found experimentally. We present a solvatomorph of pyrimethamine and provide several characteristic means to identify this unwanted toxic form and quantified the energy required to overcome its toxicity. In addition we describe that Pyr may present in different morphologies and show how it may impact the manufacturability thereof.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Bromuro de potasio, FT-IR grade, ≥99% trace metals basis
Sigma-Aldrich
1-Propanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
1-Propanol, ACS reagent, ≥99.5%
Sigma-Aldrich
Bromuro de potasio, ACS reagent, ≥99.0%
Sigma-Aldrich
Bromuro de potasio, anhydrous, free-flowing, Redi-Dri, ACS reagent, ≥99%
Sigma-Aldrich
Bromuro de potasio, ReagentPlus®, ≥99.0%
Sigma-Aldrich
Bromuro de potasio, BioUltra, ≥99.5% (AT)
Sigma-Aldrich
1-Propanol, anhydrous, 99.7%
Sigma-Aldrich
1-Propanol, ≥99%, FG
Sigma-Aldrich
Bromuro de potasio, anhydrous, powder, 99.999% trace metals basis
Sigma-Aldrich
1-Propanol, ≥99% (GC), purum
Sigma-Aldrich
Bromuro de potasio, anhydrous, free-flowing, Redi-Dri, ReagentPlus®, ≥99%
Sigma-Aldrich
Bromuro de potasio, anhydrous, powder, 99.95% trace metals basis
USP
1-Propanol, United States Pharmacopeia (USP) Reference Standard
Supelco
1-Propanol, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
1-Propanol, analytical standard
Sigma-Aldrich
1-Propanol, natural, ≥98%, FG
Sigma-Aldrich
Bromuro de potasio, BioXtra, ≥99.0%
Sigma-Aldrich
Bromuro de potasio, JIS special grade, 99.0-100.2%
Sigma-Aldrich
1-Propanol, JIS special grade
Sigma-Aldrich
1-Propanol, SAJ first grade, ≥99.0%