Saltar al contenido
Merck

932310

Sigma-Aldrich

Lithium fluoride

Sinónimos:

LiF, Fluorolithium

Iniciar sesiónpara Ver la Fijación de precios por contrato y de la organización


About This Item

Fórmula lineal:
LiF
Número de CAS:
Peso molecular:
25.94
MDL number:
UNSPSC Code:
12352302
NACRES:
NA.23

assay

≥99%

Quality Level

bp

1681 °C

mp

845 °C (lit.)

solubility

H2O: 2.9 g/L

density

2.64 g/mL at 25 °C (lit.)

orbital energy

HOMO 14 eV 
LUMO 1.0 eV 

SMILES string

[Li+].[F-]

InChI

1S/FH.Li/h1H;/q;+1/p-1

InChI key

PQXKHYXIUOZZFA-UHFFFAOYSA-M

¿Está buscando productos similares? Visita Guía de comparación de productos

Application

LiF can be used in thermoluminescent; perovskite light-emitting diodes; rechargeable batteries and MXenes applications. Lithium fluoride crystals are transparent to ultraviolet (UV) light and are used in UV optics. Lithium fluoride is used in the main route of fabrication of Mxenes by exfoliating MAX phases.

pictograms

Skull and crossbones

signalword

Danger

Hazard Classifications

Acute Tox. 3 Oral - Eye Irrit. 2 - Skin Irrit. 2 - STOT SE 3

target_organs

Respiratory system

supp_hazards

Storage Class

6.1C - Combustible acute toxic Cat.3 / toxic compounds or compounds which causing chronic effects

wgk_germany

WGK 2

flash_point_f

Not applicable

flash_point_c

Not applicable


Certificados de análisis (COA)

Busque Certificados de análisis (COA) introduciendo el número de lote del producto. Los números de lote se encuentran en la etiqueta del producto después de las palabras «Lot» o «Batch»

¿Ya tiene este producto?

Encuentre la documentación para los productos que ha comprado recientemente en la Biblioteca de documentos.

Visite la Librería de documentos

Recent progress in LiF materials for safe lithium metal anode of rechargeable batteries: Is LiF the key to commercializing Li metal batteries?
Ko J, et al.
Ceramics International, 45(1), 30-49 (2019)
Mingfu He et al.
Proceedings of the National Academy of Sciences of the United States of America, 117(1), 73-79 (2019-12-19)
Lithium is the most attractive anode material for high-energy density rechargeable batteries, but its cycling is plagued by morphological irreversibility and dendrite growth that arise in part from its heterogeneous "native" solid electrolyte interphase (SEI). Enriching the SEI with lithium
Bing Zhou et al.
ACS applied materials & interfaces, 12(4), 4895-4905 (2020-01-04)
Flexible, lightweight, robust, and multifunctional characteristics are greatly desirable for next-generation wearable electromagnetic interference (EMI) shielding materials. In this work, an alternating multilayered structure with robust polymer frame layers and directly contacted conducting layers was designed to prepare high-performance EMI
Xiaolei Yang et al.
Nature communications, 9(1), 570-570 (2018-02-10)
Perovskite light-emitting diodes (LEDs) are attracting great attention due to their efficient and narrow emission. Quasi-two-dimensional perovskites with Ruddlesden-Popper-type layered structures can enlarge exciton binding energy and confine charge carriers and are considered good candidate materials for efficient LEDs. However
Xiulin Fan et al.
Science advances, 4(12), eaau9245-eaau9245 (2018-12-28)
Solid-state electrolytes (SSEs) are receiving great interest because their high mechanical strength and transference number could potentially suppress Li dendrites and their high electrochemical stability allows the use of high-voltage cathodes, which enhances the energy density and safety of batteries.

Nuestro equipo de científicos tiene experiencia en todas las áreas de investigación: Ciencias de la vida, Ciencia de los materiales, Síntesis química, Cromatografía, Analítica y muchas otras.

Póngase en contacto con el Servicio técnico