The goal of this study is to contribute to the physics underlying the material properties of suspensions that exhibit shear thickening through the ultrasonic characterization of suspensions of cornstarch in a density-matched solution. Ultrasonic measurements at frequencies in the range of 4 to 8 MHz of the speed of sound and the frequency-dependent attenuation properties are reported for concentrations of cornstarch in a density-matched aqueous (cesium chloride brine) suspension, ranging up to 40% cornstarch. The speed of sound is found to range from 1483 ± 10 m/s in pure brine to 1765 ± 9 m/s in the 40% cornstarch suspension. The bulk modulus of a granule of cornstarch is inferred to be 1.2(± 0.1) × 10(10) Pa. The attenuation coefficient at 5 MHz increases from essentially zero in brine to 12.0 ± 1.2 dB/cm at 40% cornstarch.