Passa al contenuto
Merck

Local bonding and atomic environments in Ni-catalyzed complex hydrides.

Nanotechnology (2009-05-08)
J Graetz, S Chaudhuri, T T Salguero, J J Vajo, M S Meyer, F E Pinkerton
ABSTRACT

The local bonding and atomic environments in the Ni-catalyzed destabilized system LiBH4/MgH2 and the quaternary borohydride-amide phase Li3BN2H8, were studied by x-ray absorption spectroscopy. In both cases the Ni catalyst was introduced as NiCl2 and a qualitative comparison of the Ni K-edge near-edge structure suggests the Ni2+ is reduced to primarily Ni0 after ball milling. The extended fine structure of the Ni K edge indicates that the Ni is coordinated by approximately 3 boron atoms with an interatomic distance of approximately 2.1 A and approximately 11 Ni atoms in a split shell at around 2.5 and 2.8 A. These results, and the lack of long-range order, suggest that the Ni is present as a disordered nanocluster with a local structure similar to that of Ni3B. In the fully hydrogenated phase of LiBH4/MgH2 a small amount Mg2NiHx was also present. Surface calculations performed using density functional theory suggest that the lowest kinetic barrier for H2 chemisorption occurs on the Ni3B(100) surface.

MATERIALI
N° Catalogo
Marchio
Descrizione del prodotto

Sigma-Aldrich
Lithium tetraborate, ≥99.9% trace metals basis
Sigma-Aldrich
Lithium metaborate, 99.9% trace metals basis
Sigma-Aldrich
Lithium metaborate, ACS reagent, ≥98.0%
Sigma-Aldrich
Lithium tetraborate, ≥99.995% trace metals basis
Sigma-Aldrich
Lithium metaborate, 99.995% trace metals basis