Accéder au contenu
Merck

Cross-Linking Cellulosic Fibers with Photoreactive Polymers: Visualization with Confocal Raman and Fluorescence Microscopy.

Biomacromolecules (2015-06-24)
Marek Janko, Michael Jocher, Alexander Boehm, Laura Babel, Steven Bump, Markus Biesalski, Tobias Meckel, Robert W Stark
RÉSUMÉ

The properties of paper sheets can be tuned by adjusting the surface or bulk chemistry using functional polymers that are applied during (online) or after (offline) papermaking processes. In particular, polymers are widely used to enhance the mechanical strength of the wet state of paper sheets. However, the mechanical strength depends not only on the chemical nature of the polymeric additives but also on the distribution of the polymer on and in the lignocellulosic paper. Here, we analyze the photochemical attachment and distribution of hydrophilic polydimethylacrylamide-co-methacrylate-benzophenone P(DMAA-co-MABP) copolymers with defined amounts of photoreactive benzophenone moieties in model paper sheets. Raman microscopy was used for the unambiguous identification of P(DMAA-co-MABP) and cellulose specific bands and thus the copolymer distribution within the cellulose matrix. Two-dimensional Raman spectral maps at the intersections of overlapping cellulose fibers document that the macromolecules only partially surround the cellulose fibers, favor to attach to the fiber surface, and connect the cellulose fibers at crossings. Moreover, the copolymer appears to accumulate preferentially in holes, vacancies, and dips on the cellulose fiber surface. Correlative brightfield, Raman, and confocal laser scanning microscopy finally reveal a reticular three-dimensional distribution of the polymer and show that the polymer is predominately deposited in regions of high capillarity (i.e., in proximity to fine cellulose fibrils). These data provide deeper insights into the effects of paper functionalization with a copolymer and aid in understanding how these agents ultimately influence the local and overall properties of paper.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
N,N-Diméthylformamide, anhydrous, 99.8%
Sigma-Aldrich
Tetrahydrofurane, anhydrous, ≥99.9%, inhibitor-free
Sigma-Aldrich
Dichlorométhane, anhydrous, ≥99.8%, contains 40-150 ppm amylene as stabilizer
Sigma-Aldrich
Tetrahydrofurane, anhydrous, contains 250 ppm BHT as inhibitor, ≥99.9%
Sigma-Aldrich
Triéthylamine, ≥99.5%
Sigma-Aldrich
Méthanol, anhydrous, 99.8%
Sigma-Aldrich
N,N-Diméthylformamide, for molecular biology, ≥99%
Sigma-Aldrich
Rhodamine B, ≥95% (HPLC)
Sigma-Aldrich
Methacryloyl chloride, 97%, contains ~200 ppm monomethyl ether hydroquinone as stabilizer
Sigma-Aldrich
Triéthylamine, BioUltra, ≥99.5% (GC)
Sigma-Aldrich
Triéthylamine, ≥99%
Sigma-Aldrich
Rhodamine B, for fluorescence
Sigma-Aldrich
Oxyde d′aluminium, nanopowder, <50 nm particle size (TEM)
Sigma-Aldrich
Éther diéthylique
Sigma-Aldrich
Éther diéthylique, contains 1 ppm BHT as inhibitor, anhydrous, ≥99.7%
Sigma-Aldrich
Aluminum oxide, nanoparticles, <50 nm particle size (DLS), 20 wt. % in isopropanol
Sigma-Aldrich
Triéthylamine, puriss. p.a., ≥99.5% (GC)
Sigma-Aldrich
Oxyde d′aluminium, nanopowder, 13 nm primary particle size (TEM), 99.8% trace metals basis
Sigma-Aldrich
Acétone, natural, ≥97%
Sigma-Aldrich
Oxyde d′aluminium, 99.997% trace metals basis
Sigma-Aldrich
Acétone, ≥99%, meets FCC analytical specifications
Sigma-Aldrich
Aluminum oxide, nanoparticles, 30-60 nm particle size (TEM), 20 wt. % in H2O
Sigma-Aldrich
4-Hydroxybenzophenone, 98%
Supelco
Tetrahydrofurane, HPLC grade, ≥99.9%, inhibitor-free
Sigma-Aldrich
Triéthylamine, for amino acid analysis, ≥99.5% (GC)
Sigma-Aldrich
Triéthylamine, ≥99.5%
Sigma-Aldrich
Triéthylamine, for protein sequence analysis, ampule, ≥99.5% (GC)
Sigma-Aldrich
N,N-Dimethylacetoacetamide solution, 80% in H2O
Sigma-Aldrich
Aluminum oxide, mesostructured, MSU-X (wormhole), average pore size 3.8 nm
Sigma-Aldrich
Oxyde d′aluminium, single crystal substrate, <0001>