Accéder au contenu
Merck

Ratio of 8-hydroxyguanine in intact DNA to free 8-hydroxyguanine is increased in Alzheimer disease ventricular cerebrospinal fluid.

Archives of neurology (2001-03-20)
M A Lovell, W R Markesbery
RÉSUMÉ

Markers of oxidative stress are increased in cerebrospinal fluid (CSF) of patients with Alzheimer disease (AD), although none of those reported are appropriate diagnostic markers because of the overlap between patients with AD and control subjects. To determine the ratio of 8-hydroxyguanine (8-OHG) levels in intact DNA to free 8-OHG in the ventricular CSF of patients with AD and age-matched control subjects. The most prominent marker of DNA oxidation is 8-OHG. Free 8-hydroxy-2'-deoxyguanosine (8-OHdG) was isolated from ventricular CSF taken at autopsy from 18 subjects with AD and 7 control subjects using solid-phase extraction columns. Levels were measured as the hydrolysis product, 8-OHG, using gas chromatography/mass spectrometry with selective ion monitoring. Intact DNA was isolated from the same CSF and the levels of 8-OHG were determined in the intact structures. Stable-labeled 8-OHG was used for quantification. A statistically significant (P<.05) 108-fold increase in the ratio of 8-OHG in intact DNA to free 8-OHG was observed in patients with AD. Analysis of the data distribution indicated that the lowest AD ratio was 3.5 times higher than the highest control ratio; there was no overlap of the 2 populations. Although the data for each individual measurement demonstrates overlap between patients with AD and control subjects, the ratio of 8-OHG intact in DNA to free 8-OHG demonstrates a delineation between patients with AD and control 8-OHG subjects and may be useful as a marker of disease progression or the efficacy of therapeutic antioxidant intervention.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Glycine, ReagentPlus®, ≥99% (HPLC)
Sigma-Aldrich
L-glutamine solution, 200 mM, solution, sterile-filtered, BioXtra, suitable for cell culture
Sigma-Aldrich
Glycine, suitable for electrophoresis, ≥99%
Sigma-Aldrich
D-sorbitol, ≥98% (GC)
Sigma-Aldrich
L-Glutamine, meets USP testing specifications, suitable for cell culture, 99.0-101.0%, from non-animal source
Sigma-Aldrich
Glycine, BioUltra, for molecular biology, ≥99.0% (NT)
SAFC
Solution de L-glutamine 200 mM, 29.23 mg/mL in saline, solution, suitable for cell culture
Sigma-Aldrich
L-Leucine, from non-animal source, meets EP, JP, USP testing specifications, suitable for cell culture, 98.5-101.0%
Sigma-Aldrich
L-Glutamic acid, ReagentPlus®, ≥99% (HPLC)
Sigma-Aldrich
L-Proline, from non-animal source, meets EP, USP testing specifications, suitable for cell culture
Sigma-Aldrich
L-Glutamine, ReagentPlus®, ≥99% (HPLC)
Sigma-Aldrich
L-Isoleucine, from non-animal source, meets EP, JP, USP testing specifications, suitable for cell culture, 98.5-101.0%
Sigma-Aldrich
L-Leucine, reagent grade, ≥98% (HPLC)
Sigma-Aldrich
L-Lysine, ≥98% (TLC)
Sigma-Aldrich
L-Serine, ReagentPlus®, ≥99% (HPLC)
Sigma-Aldrich
L-Cystine, from non-animal source, meets EP testing specifications, suitable for cell culture, 98.5-101.0%
Sigma-Aldrich
Zinc, dust, <10 μm, ≥98%
Sigma-Aldrich
myo-inositol, ≥99% (GC), BioReagent
Sigma-Aldrich
3,4-Dihydroxy-L-phenylalanine, ≥98% (TLC)
Sigma-Aldrich
Aluminum, powder, ≥91% (complexometric)
Sigma-Aldrich
Acide L-aspartique, reagent grade, ≥98% (HPLC)
Sigma-Aldrich
γ-Aminobutyric acid, ≥99%
Sigma-Aldrich
L-Tyrosine, from non-animal source, meets EP, USP testing specifications, suitable for cell culture, 99.0-101.0%
Sigma-Aldrich
myo-inositol, ≥99%
Sigma-Aldrich
Glycine, from non-animal source, meets EP, JP, USP testing specifications, suitable for cell culture, ≥98.5%
Sigma-Aldrich
L-Asparagine, ≥98% (HPLC)
Sigma-Aldrich
L-Phenylalanine, from non-animal source, meets EP, JP, USP testing specifications, suitable for cell culture, 98.5-101.0%
Sigma-Aldrich
L-Glutamic acid, from non-animal source, meets EP testing specifications, suitable for cell culture, 98.5-100.5%
Sigma-Aldrich
Magnésium, powder, ≥99%
SAFC
Glycine