Brain-penetrant, highly potent and selective RIPK1 (RIP1) inhibitor with necroptosis blocking efficacy in vitro and in vivo.
GSK′963 (GSK′963A) is a brain-penetrant, highly potent and selective ATP site-targeting receptor-interacting protein 1 kinase (RIP1; RIPK1) inhibitor (IC50 = 0.8-8 nM with 50 μM ATP; IC50 >10 μM against RIPK2/3/5 and 335 other kinases) that protects against TNFα/zVAD-induced necroptosis (EC50 = 1/4 nM in mouse L929/human U937 cultures) and blocks Y. pestis-induced death of murine fetal liver macrophages (1 μM). GSK′963 prevents lethal hypothermia by acute sterile shock (2 mg/kg i.p. 15 min prior to TNFα/zVAD i.v.) and protects against acute neuronal death upon autologous blood intracerebral hemorrhage induction in mice in vivo (25 mg/kg/3 hr i.p.).
Code de la classe de stockage
11 - Combustible Solids
Classe de danger pour l'eau (WGK)
WGK 3
Point d'éclair (°F)
Not applicable
Point d'éclair (°C)
Not applicable
Faites votre choix parmi les versions les plus récentes :
Receptor-interacting protein kinases 1 and 3 (RIPK1/3) have best been described for their role in mediating a regulated form of necrosis, referred to as necroptosis. During this process, RIPK3 phosphorylates mixed lineage kinase domain-like (MLKL) to cause plasma membrane rupture.
Herpes simplex virus (HSV)-1 and HSV-2 are significant human pathogens causing recurrent disease. During infection, HSV modulates cell death pathways using the large subunit (R1) of ribonucleotide reductase (RR) to suppress apoptosis by binding to and blocking caspase-8. Here, we demonstrate
Recent studies using cultured cells and rodent intracerebral hemorrhage (ICH) models have implicated RIPK1 (receptor interacting protein kinase-1) as a driver of programmed necrosis and secondary injury based on use of chemical inhibitors. However, these inhibitors have off-target effects and
Necroptosis and signaling regulated by RIP1 kinase activity is emerging as a key driver of inflammation in a variety of disease settings. A significant amount has been learned about how RIP1 regulates necrotic cell death through the use of the
Proceedings of the National Academy of Sciences of the United States of America, 111(20), 7391-7396 (2014-05-07)
A number of pathogens cause host cell death upon infection, and Yersinia pestis, infamous for its role in large pandemics such as the "Black Death" in medieval Europe, induces considerable cytotoxicity. The rapid killing of macrophages induced by Y. pestis
Notre équipe de scientifiques dispose d'une expérience dans tous les secteurs de la recherche, notamment en sciences de la vie, science des matériaux, synthèse chimique, chromatographie, analyse et dans de nombreux autres domaines..