Aromadendrin has been considered for potential use in the management of Type 2 diabetes due to its ability to stimulate glucose uptake and improve insulin resistance by inducing adipogenesis through increased PPAR2 expression.
X-ray structures of two compounds isolated from wood knots of coniferous trees, namely dihydrokaempferol (3,5,8,13-tetrahydroxyflavanon) and lariciresinol (3,14-dimetoxy-7,10-epoxylignan-4,15,19-triol), are presented here. Diffraction data for the Dihydrokaempferol crystals were collected on a CAD4 diffractometer and on a synchrotron for the lariciresinol
From the leaves of Helicia cochinchinensis, collected on Okinawa Island, seven phenolic glucosides and two terpenic glucosides were isolated. Five of the phenolic glucosides were previously known, being identified with p-coumaric and ferulic acids glucosyl esters, rhodioloside, helicidiol, and naringenin
Agents that stimulate glucose uptake and improve insulin resistance may be useful in the management of type 2 diabetes mellitus (DM). Thus, the aims of this study were to assess the effects of aromadendrin, a flavonoid from Gleditsia sinensis Lam.
Flavonoid hydroxylation is one way to increase the biological activities of these molecules and the number of hydroxyl groups needed for polymerization, esterification, alkylation, glycosylation and acylation reactions. These reactions have been suggested as a promising route to enhance flavonoid
The stimulation of glucose uptake into peripheral tissues is an important mechanism for the removal of glucose in blood and for the management of diabetes mellitus (DM). Since recent results have demonstrated the beneficial effects of flavonoids in relation to
Notre équipe de scientifiques dispose d'une expérience dans tous les secteurs de la recherche, notamment en sciences de la vie, science des matériaux, synthèse chimique, chromatographie, analyse et dans de nombreux autres domaines..