The most common method of carbon dioxide (CO(2)) capture is the absorption of CO(2) into a falling thin film of an aqueous amine solution. Modeling of mass transfer during CO(2) absorption is an important way to gain insight and understanding
Nine different isoenzymes and (or) isoforms of alkaline phosphatase (ALP; EC 3.1.3.1) from human tissue were studied with respect to Km and Vmax values for p-nitrophenyl phosphate (p-NPP) in seven different potential phosphoacceptors/buffers. Generally, the phosphoacceptors/buffers with the lowest affinity
Journal of environmental sciences (China), 21(7), 907-913 (2009-10-30)
The carbon dioxide (CO2) removal efficiency, reaction rate, and CO2 loading into aqueous blended monoethanolamine (MEA) + 2-amino-2-methyl-1-propanol (AMP) solutions to enhance absorption characteristics of MEA and AMP were carried out by the absorption/regeneration process. As a result, compared to
The influence of hydrophobicity in flat-plate porous poly(vinylidene fluoride) (PVDF) and expended polytetrafluoroethylene (PTFE) membranes on CO(2) recovery using aqueous solutions of piperazine (PZ) and alkanolamine is examined. Experiments were conducted at various gas flow rates, liquid flow rates, and
Journal of hazardous materials, 175(1-3), 344-351 (2009-11-17)
The removal of CO(2) from a 10 vol% CO(2) gas by chemical absorption with 30 wt% alkanolamine solutions containing monoethanolamine (MEA), piperazine (PZ), and 2-amino-2-methyl-1-propanol (AMP) in the cross-flow rotating packed bed (RPB) was investigated. The CO(2) removal efficiency increased
Notre équipe de scientifiques dispose d'une expérience dans tous les secteurs de la recherche, notamment en sciences de la vie, science des matériaux, synthèse chimique, chromatographie, analyse et dans de nombreux autres domaines..