Direkt zum Inhalt
Merck

Remodeling of the postsynaptic plasma membrane during neural development.

Molecular biology of the cell (2016-11-05)
Karolina Tulodziecka, Barbara B Diaz-Rohrer, Madeline M Farley, Robin B Chan, Gilbert Di Paolo, Kandice R Levental, M Neal Waxham, Ilya Levental
ZUSAMMENFASSUNG

Neuronal synapses are the fundamental units of neural signal transduction and must maintain exquisite signal fidelity while also accommodating the plasticity that underlies learning and development. To achieve these goals, the molecular composition and spatial organization of synaptic terminals must be tightly regulated; however, little is known about the regulation of lipid composition and organization in synaptic membranes. Here we quantify the comprehensive lipidome of rat synaptic membranes during postnatal development and observe dramatic developmental lipidomic remodeling during the first 60 postnatal days, including progressive accumulation of cholesterol, plasmalogens, and sphingolipids. Further analysis of membranes associated with isolated postsynaptic densities (PSDs) suggests the PSD-associated postsynaptic plasma membrane (PSD-PM) as one specific location of synaptic remodeling. We analyze the biophysical consequences of developmental remodeling in reconstituted synaptic membranes and observe remarkably stable microdomains, with the stability of domains increasing with developmental age. We rationalize the developmental accumulation of microdomain-forming lipids in synapses by proposing a mechanism by which palmitoylation of the immobilized scaffold protein PSD-95 nucleates domains at the postsynaptic plasma membrane. These results reveal developmental changes in lipid composition and palmitoylation that facilitate the formation of postsynaptic membrane microdomains, which may serve key roles in the function of the neuronal synapse.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Avanti
16:0-18:0-16:0 D5 TG, Avanti Research - A Croda Brand 860902P, powder