Direkt zum Inhalt
Merck
  • Identification of aldehyde reductase catalyzing the terminal step for conversion of xylose to butanetriol in engineered Escherichia coli.

Identification of aldehyde reductase catalyzing the terminal step for conversion of xylose to butanetriol in engineered Escherichia coli.

Bioprocess and biosystems engineering (2015-06-07)
Kris Niño G Valdehuesa, Won-Keun Lee, Kristine Rose M Ramos, Rhudith B Cabulong, JiSoo Choi, Huaiwei Liu, Grace M Nisola, Wook-Jin Chung
ZUSAMMENFASSUNG

Biosynthetic pathways for the production of biofuels often rely on inherent aldehyde reductases (ALRs) of the microbial host. These native ALRs play vital roles in the success of the microbial production of 1,3-propanediol, 1,4-butanediol, and isobutanol. In the present study, the main ALR for 1,2,4-butanetriol (BT) production in Escherichia coli was identified. Results of real-time PCR analysis for ALRs in EWBT305 revealed the increased expression of adhP, fucO, adhE, and yqhD genes during BT production. The highest increase of expression was observed up to four times in yqhD. Singular deletion of adhP, fucO, or adhE gene showed marginal differences in BT production compared to that of the parent strain, EWBT305. Remarkably, yqhD gene deletion (KBTA4 strain) almost completely abolished BT production while its re-introduction (wild-type gene with its native promoter) on a low copy plasmid restored 75 % of BT production (KBTA4-2 strain). This suggests that yqhD gene is the main ALR of the BT pathway. In addition, KBTA4 showed almost no NADPH-dependent ALR activity, but was also restored upon re-introduction of the yqhD gene (KBTA4-2 strain). Therefore, the required ALR activity to complete the BT pathway was mainly contributed by YqhD. Increased gene expression and promiscuity of YqhD were both found essential factors to render YqhD as the key ALR for the BT pathway.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
LB-Bouillon (Lennox), Highly-referenced microbial growth powder medium, low salt, suitable for salt-sensitive E.coli culture.
Sigma-Aldrich
Thiamin -hydrochlorid, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture
Sigma-Aldrich
Magnesiumsulfat, BioReagent, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
Magnesiumsulfat -Lösung, for molecular biology, 1.00 M±0.04 M
Sigma-Aldrich
Thiamin -hydrochlorid, reagent grade, ≥99% (HPLC)
Sigma-Aldrich
D-(+)-Xylose, ≥99%
Sigma-Aldrich
Magnesiumsulfat -Lösung, BioUltra, for molecular biology
Sigma-Aldrich
D-(+)-Xylose, BioUltra, ≥99.0% (sum of enantiomers, HPLC)
Sigma-Aldrich
D-(+)-Xylose, ≥99% (GC)
Sigma-Aldrich
Thiamin -hydrochlorid, ≥98%, FCC, FG
Sigma-Aldrich
Magnesiumsulfat, ≥99.99% trace metals basis
Sigma-Aldrich
D-(+)-Xylose, ≥99% (GC), BioXtra
Sigma-Aldrich
Thiamin -hydrochlorid, meets USP testing specifications