Direkt zum Inhalt
Merck
  • Systematic analysis of silver nanoparticle ionic dissolution by tangential flow filtration: toxicological implications.

Systematic analysis of silver nanoparticle ionic dissolution by tangential flow filtration: toxicological implications.

Nanotoxicology (2013-07-16)
Elizabeth I Maurer, Monita Sharma, John J Schlager, Saber M Hussain
ZUSAMMENFASSUNG

In the field of toxicology of nanomaterials, scientists have not clearly determined if the observed toxicological events are due to the nanoparticles (NPs) themselves or the dissolution of ions released into the biophysiological environment or both phenomenon participate in combination based upon their bioregional and temporal occurrence during exposure conditions. Consequently, research involving the toxicological analysis of silver NPs (Ag-NPs) has shifted towards assessment of 'nanosized' silver in comparison to its solvated 'ionic' counterpart. Current literature suggests that dissolution of ions from Ag-NPs may play a key role in toxicity; however, the present assessment methodology to separate ions from NPs still requires improvement before a definitive cause of toxicity can be determined. Recently, centrifugation-based techniques have been employed to obtain solvated ions from the NP solution, but this approach leads to NP agglomeration, making further toxicological analysis difficult to assess. Additionally, extremely small NPs are retained in the supernatant even after ultracentrifugation, leading to incomplete separation of ions from their respective NPs. To address these complex toxicology issues we applied enhanced separation techniques with the aim to study levels of ions originating from the Ag-NP using separation by a recirculating tangential flow filtration system. This system uses a unique diffusion-driven filtration method that retains large particles within the continuous flow path, while allowing the solution (ions) to pass through molecular filters by lateral diffusion separation. Use of this technique provides reproducible NP separation from their solvated ions which permits for further quantification using an inductively coupled plasma mass spectrometry or comparison use in bioassay exposures to biological systems. In this study, we thoroughly characterised NPs in biologically relevant solutions to understand the dissolution of Ag-NPs (10 and 50 nm) over time. Our results suggest that the ion dissolution from Ag-NPs is dependent on parameters such as exposure time, chemical composition and temperature of the exposure solution. Further, the well-characterised separated ionic and NP solutions were exposed to a lung epithelial cell line (A549) to evaluate the toxicity of each fraction. Results suggest that although Ag-NPs (unseparated) show concentration-dependent toxicity, dissolution of ions appears to exacerbate the toxicological effect. This finding adds data to the set of probable toxic exposure mechanisms elicited by metallic nanomaterials and provides important consideration when assessing findings of key cell function modulation.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Silber, conductive paste
Sigma-Aldrich
Silber-Nanodrähte, diam. × L 50 nm × 6 μm, 0.5% (isopropyl alcohol suspension)
Sigma-Aldrich
Silber, wire, diam. 0.5 mm, 99.9% trace metals basis
Sigma-Aldrich
Silber-Nanodrähte, diam. × L 200  nm × 10 μm, 0.5% (isopropyl alcohol suspension)
Sigma-Aldrich
Silber, foil, thickness 0.1 mm, 99.9% trace metals basis
Sigma-Aldrich
Silber-Nanodrähte, diam. × L 100 nm × 6 μm, 0.5% (isopropyl alcohol suspension)
Sigma-Aldrich
Silber, wire, diam. 1.0 mm, 99.9% trace metals basis
Sigma-Aldrich
Silber, colloidal, 65-75% Ag basis
Sigma-Aldrich
Silber, foil, thickness 0.25 mm, 99.9% trace metals basis
Sigma-Aldrich
Silber, granular, >250 μm, 99.99% trace metals basis
Sigma-Aldrich
Silber, wire, diam. 0.5 mm, ≥99.99% trace metals basis
Sigma-Aldrich
Silber, wire, diam. 0.25 mm, ≥99.99% trace metals basis
Sigma-Aldrich
Silber, foil, thickness 0.025 mm, 99.9% trace metals basis
Sigma-Aldrich
Silber, powder, <250 μm, 99.99% trace metals basis
Sigma-Aldrich
Silber, wire, diam. 0.25 mm, 99.9% trace metals basis
Sigma-Aldrich
Silber, wire, diam. 2.0 mm, ≥99.99% trace metals basis
Sigma-Aldrich
Silber, foil, thickness 1.0 mm, 99.99% trace metals basis
Silber, foil, 150x150mm, thickness 0.25mm, as rolled, 99.95+%
Silber, foil, 100x100mm, thickness 0.125mm, as rolled, 99.95+%
Sigma-Aldrich
Silber, wire, diam. 1.0 mm, ≥99.99% trace metals basis
Sigma-Aldrich
Silber, wool, diam. 0.05 mm, ≥99.9% trace metals basis
Silber, insulated wire, 10m, conductor diameter 0.25mm, insulation thickness 0.023mm, polyester insulation, 99.99%
Silber, rod, 100mm, diameter 3.0mm, as drawn, 99.997%
Silber, foil, 150x150mm, thickness 0.5mm, as rolled, 99.99+%
Sigma-Aldrich
Silber, foil, thickness 2.0 mm, 99.9% trace metals basis
Silber, wire reel, 10m, diameter 1.0mm, annealed, 99.99%
Silber, wire reel, 10m, diameter 0.8mm, as drawn, 99.99%
Silber, wire reel, 1m, diameter 0.25mm, as drawn, 99.997%
Silber, foil, 25x25mm, thickness 0.5mm, as rolled, 99.99+%
Silber, foil, 100x100mm, thickness 0.5mm, as rolled, 99.99+%