Direkt zum Inhalt
Merck

Transformation of 1- and 2-methylnaphthalene by Cunninghamella elegans.

Applied and environmental microbiology (1984-01-01)
C E Cerniglia, K J Lambert, D W Miller, J P Freeman
ZUSAMMENFASSUNG

Cunninghamella elegans metabolized 1- and 2-methylnaphthalene primarily at the methyl group to form 1- and 2-hydroxymethylnaphthalene, respectively. Other compounds isolated and identified were 1- and 2-naphthoic acids, 5-hydroxy-1-naphthoic acid, 5-hydroxy-2-naphthoic acid, 6-hydroxy-2-naphthoic acid, and phenolic derivatives of 1- and 2-methylnaphthalene. The metabolites were isolated by thin-layer and reverse-phase high-pressure liquid chromatography and characterized by the application of UV-visible absorption, 1H nuclear magnetic resonance, and mass spectral techniques. Experiments with [8-14C]2-methylnaphthalene indicated that over a 72-h period, 9.8% of 2-methylnaphthalene was oxidized to metabolic products. The ratio of organic-soluble in water-soluble metabolites at 2 h was 92:8, and at 72 h it was 41:59. Enzymatic treatment of the 48-h aqueous phase with either beta-glucuronidase or arylsulfatase released 60% of the metabolites of 2-methylnaphthalene that were extractable with ethyl acetate. In both cases, the major conjugates released were 5-hydroxy-2-naphthoic acid and 6-hydroxy-2-naphthoic acid. The ratio of the water-soluble glucuronide conjugates to sulfate conjugates was 1:1. Incubation of C. elegans with 2-methylnaphthalene under an 18O2 atmosphere and subsequent mass spectral analysis of 2-hydroxymethylnaphthalene indicated that hydroxylation of the methyl group is catalyzed by a monooxygenase.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
1-Methylnaphthalen, 95%
Sigma-Aldrich
1-Methylnaphthalen, ≥95%
Supelco
1-Methylnaphthalen, analytical standard