Direkt zum Inhalt
Merck

Effect of Diphtheria Toxin-Based Gene Therapy for Hepatocellular Carcinoma.

Cancers (2020-02-23)
Kenya Kamimura, Takeshi Yokoo, Hiroyuki Abe, Norihiro Sakai, Takuro Nagoya, Yuji Kobayashi, Masato Ohtsuka, Hiromi Miura, Akira Sakamaki, Hiroteru Kamimura, Norio Miyamura, Hiroshi Nishina, Shuji Terai
ZUSAMMENFASSUNG

Hepatocellular carcinoma (HCC) is a major global malignancy, responsible for >90% of primary liver cancers. Currently available therapeutic options have poor performances due to the highly heterogeneous nature of the tumor cells; recurrence is highly probable, and some patients develop resistances to the therapies. Accordingly, the development of a novel therapy is essential. We assessed gene therapy for HCC using a diphtheria toxin fragment A (DTA) gene-expressing plasmid, utilizing a non-viral hydrodynamics-based procedure. The antitumor effect of DTA expression in HCC cell lines (and alpha-fetoprotein (AFP) promoter selectivity) is assessed in vitro by examining HCC cell growth. Moreover, the effect and safety of the AFP promoter-selective DTA expression was examined in vivo using an HCC mice model established by the hydrodynamic gene delivery of the yes-associated protein (YAP)-expressing plasmid. The protein synthesis in DTA transfected cells is inhibited by the disappearance of tdTomato and GFP expression co-transfected upon the delivery of the DTA plasmid; the HCC cell growth is inhibited by the expression of DTA in HCC cells in an AFP promoter-selective manner. A significant inhibition of HCC occurrence and the suppression of the tumor marker of AFP and des-gamma-carboxy prothrombin can be seen in mice groups treated with hydrodynamic gene delivery of DTA, both 0 and 2 months after the YAP gene delivery. These results suggest that DTA gene therapy is effective for HCC.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Human AFP / Alpha-fetoprotein ELISA Kit, for serum, plasma, cell culture supernatants and urine