Accéder au contenu
Merck

Kinetic mechanism of human class IV alcohol dehydrogenase functioning as retinol dehydrogenase.

The Journal of biological chemistry (2002-05-09)
Chu-Fang Chou, Ching-Long Lai, Yen-Chun Chang, Gregg Duester, Shih-Jiun Yin
RÉSUMÉ

Molecular genetic studies have indicated that alcohol dehydrogenase may be involved in the synthesis of retinoic acid, a hormonal molecule regulating diverse cellular functions at the transcriptional level. Class IV alcohol dehydrogenase (ADH) has been reported to be the most efficient enzyme catalyzing oxidation of retinol in human ADH family. Initial velocity, product inhibition, and dead-end inhibition experiments were performed with the recombinant human class IV ADH to elucidate kinetic mechanism with all-trans-retinol and all-trans-retinal as natural substrates. Fluorescence quenching was titrated in formation of the binary and abortive ternary enzyme complexes. The minimal mechanism deduced from steady-state kinetic and equilibrium binding studies is best described as an asymmetric rapid equilibrium random mechanism with two dead-end ternary complexes for retinol oxidation and a rapid equilibrium ordered mechanism with one dead-end ternary complex for retinal reduction, a unique mechanistic form for zinc-containing ADHs in the medium chain dehydrogenase/reductase superfamily. Dissociation constants for the binary complexes as well as the productive and abortive ternary complexes determined from different experimental approaches are in reasonable agreement. Kinetic isotope effect studies suggest rate-limiting isomerization of the central ternary complexes in both reaction directions. The potential interference of retinol metabolism by ethanol through the ADH pathway may play a significant role in the pathogenesis of fetal alcohol syndrome and alcohol-related upper digestive tract cancer.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Roche
β-Nicotinamide-adénine-dinucléotide hydrate, Grade I, free acid