Accéder au contenu
Merck

Mechanism of resistance to penoxsulam in late watergrass [ Echinochloa phyllopogon (Stapf) Koss.].

Journal of agricultural and food chemistry (2009-03-28)
Hagai Yasuor, Maria D Osuna, Aida Ortiz, Néstor E Saldaín, James W Eckert, Albert J Fischer
RÉSUMÉ

Late watergrass [ Echinochloa phyllopogon (Stapf.) Koss.] is a major weed of California rice that has evolved P450-mediated metabolic resistance to multiple herbicides. Resistant (R) populations are also poorly controlled by the recently introduced herbicide penoxsulam. Ratios (R/S) of the R to susceptible (S) GR(50) (herbicide rate for 50% growth reduction) ranged from 5 to 9. Although specific acetolactate synthase (ALS) activity was 1.7 higher in R than in S plants, the enzyme in R plants was about 6 times more susceptible to the herbicide. R plants exhibited faster (2.8 times) oxidative [(14)C]-penoxsulam metabolism than S plants 24 h after treatment. Addition of malathion (P450 inhibitor) enhanced herbicide phytotoxicity and reduced penoxsulam metabolism in R plants. Tank mixtures with thiobencarb (can induce P450) antagonized penoxsulam toxicity in R plants, suggesting penoxsulam may be broken down by a thiobencarb-inducible enzyme. These results suggest E. phyllopogon resistance to penoxsulam is mostly due to enhanced herbicide metabolism, possibly via P450 monooxidation.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Supelco
Thiobencarb, PESTANAL®, analytical standard