Accéder au contenu
Merck

Dimorphecolic acid is synthesized by the coordinate activities of two divergent Delta12-oleic acid desaturases.

The Journal of biological chemistry (2004-01-14)
Edgar B Cahoon, Anthony J Kinney
RÉSUMÉ

Dimorphecolic acid (9-OH-18:2Delta(10)(trans)(,12)(trans)) is the major fatty acid of seeds of Dimorphotheca species. This fatty acid contains structural features that are not typically found in plant fatty acids, including a C-9 hydroxyl group, Delta(10),Delta(12)-conjugated double bonds, and trans-Delta(12) unsaturation. Expressed sequence tag analysis was conducted to determine the biosynthetic origin of dimorphecolic acid. cDNAs for two divergent forms of Delta(12)-oleic acid desaturase, designated DsFAD2-1 and Ds-FAD2-2, were identified among expressed sequence tags generated from developing Dimorphotheca sinuata seeds. Expression of DsFAD2-1 in Saccharomyces cerevisiae and soybean somatic embryos resulted in the accumulation of the trans-Delta(12) isomer of linoleic acid (18: 2Delta(9)(cis)(,12)(trans)) rather than the more typical cis-Delta(12) isomer. When co-expressed with DsFAD2-1 in soybean embryos or yeast, DsFAD2-2 converted 18:2Delta(9)(cis)(,12)(trans) into dimorphecolic acid. When DsFAD2-2 was expressed alone in soybean embryos or together with a typical cis-Delta(12)-oleic acid desaturase in yeast, trace amounts of the cis-Delta(12) isomer of dimorphecolic acid (9-OH-18:2Delta(10)(trans,)(12)(cis)) were formed from DsFAD2-2 activity with cis-Delta(12)-linoleic acid [corrected]. These results indicate that DsFAD2-2 catalyzes the conversion of the Delta(9) double bond of linoleic acid into a C-9 hydroxyl group and Delta(10)(trans) double bond and displays a substrate preference for the trans-Delta(12), rather than the cis-Delta(12), isomer of linoleic acid. Overall these data are consistent with a biosynthetic pathway of dimorphecolic acid involving the concerted activities of DsFAD2-1 and DsFAD2-2. The evolution of two divergent Delta(12)-oleic acid desaturases for the biosynthesis of an unusual fatty acid is unprecedented in plants.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
9(S)-HODE, ≥98% (HPLC)