Accéder au contenu
Merck

A novel ALG10/TGF-β positive regulatory loop contributes to the stemness of colorectal cancer.

Aging (2022-06-10)
Xiaotian Xu, Huideng Wang, Xinhui Li, Xiaoqun Duan, Yuhui Wang
RÉSUMÉ

The roles of asparagine-linked glycosylation (ALG) members in tumorigenic process have been widely explored. However, their effects in colorectal cancer progression are still confusing. Here, we screened 12 ALGs' expression through online datasets and found that ALG10 was mostly upregulated in colorectal cancer tissues. We found that ALG10 knockdown significantly suppressed the expression of stemness markers, ALDH activity, and sphere-formation ability. In vivo tumorigenic analysis indicated that ALG10 knockdown attenuated the tumor-initiating ability and chemoresistance of colorectal cancer cells. Further mechanistic studies showed that ALG10 knockdown suppressed the activity of TGF-β signaling by reducing TGFBR2 glycosylation, which was necessary for ALG10-mediated effects on colorectal cancer stemness; Conversely, TGF-β signaling activated ALG10 gene promoter activity through Smad2's binding to ALG10 gene promoter and TGF-β signaling promoted the stemness of colorectal cancer cells in an ALG10-dependent manner. This work identified a novel ALG10/TGF-β positive regulatory loop responsible for colorectal cancer stemness.