Accéder au contenu
MilliporeSigma

Experimental and computational studies of physicochemical properties influence NSAID-cyclodextrin complexation.

AAPS PharmSciTech (2014-04-11)
Linda A Felton, Carmen Popescu, Cody Wiley, Emilio Xavier Esposito, Philippe Lefevre, Anton J Hopfinger
RÉSUMÉ

The objective of this research was to investigate physicochemical properties of an active pharmaceutical ingredient (API) that influence cyclodextrin complexation through experimental and computational studies. Native β-cyclodextrin (B-CD) and two hydroxypropyl derivatives were first evaluated by conventional phase solubility experiments for their ability to complex four poorly water-soluble nonsteroidal anti-inflammatory drugs (NSAIDs). Differential scanning calorimetry was used to confirm complexation. Secondly, molecular modeling was used to estimate Log P and aqueous solubility (S o) of the NSAIDs. Molecular dynamics simulations (MDS) were used to investigate the thermodynamics and geometry of drug-CD cavity docking. NSAID solubility increased linearly with increasing CD concentration for the two CD derivatives (displaying an AL profile), whereas increases in drug solubility were low and plateaued in the B-CD solutions (type B profile). The calculated Log P and S o of the NSAIDs were in good concordance with experimental values reported in the literature. Side chain substitutions on the B-CD moiety did not significantly influence complexation. Explicitly, complexation and the associated solubility increase were mainly dependent on the chemical structure of the NSAID. MDS indicated that each NSAID-CD complex had a distinct geometry. Moreover, complexing energy had a large, stabilizing, and fairly constant hydrophobic component for a given CD across the NSAIDs, while electrostatic and solvation interaction complex energies were quite variable but smaller in magnitude.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Ibuprofen, ≥98% (GC)
USP
Ibuprofen, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Ketoprofen, ≥98% (TLC)
Supelco
Ibuprofen
USP
Naproxen, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Naproxen, 98%
USP
Ketoprofen, United States Pharmacopeia (USP) Reference Standard
Supelco
Ibuprofen, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Naproxen, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Flurbiprofen, cyclooxygenase inhibitor
Supelco
Ketoprofen, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Naproxen, meets USP testing specifications
Naproxen, European Pharmacopoeia (EP) Reference Standard
Ibuprofen, European Pharmacopoeia (EP) Reference Standard
Supelco
Flurbiprofen, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Naproxène, VETRANAL®, analytical standard
Sigma-Aldrich
Ibuprofen, meets USP testing specifications
Ibuprofen for peak identification, European Pharmacopoeia (EP) Reference Standard
Supelco
Ketoprofen, VETRANAL®, analytical standard
Sigma-Aldrich
Ketoprofen, meets USP testing specifications
Flurbiprofen, European Pharmacopoeia (EP) Reference Standard
Ketoprofen, European Pharmacopoeia (EP) Reference Standard