Ammonium 2-(methylthio)ethanesulfonate (Methyl coenzyme M) is converted into methane by the enzyme Methyl-coenzyme M reductase (MCR) derived from methanogenic archaea. Methy-coenzyme M is used in studies on methanogenic (methane-producing) enzymatic processes.
Conditionnement
Bottomless glass bottle. Contents are inside inserted fused cone.
Code de la classe de stockage
11 - Combustible Solids
Classe de danger pour l'eau (WGK)
WGK 3
Point d'éclair (°F)
Not applicable
Point d'éclair (°C)
Not applicable
Faites votre choix parmi les versions les plus récentes :
Methyl-coenzyme M reductase catalyzes the reversible synthesis of methane from methyl-coenzyme M in methanogenic and ANME-1 and ANME-2 Archaea. The purification procedure for methyl-coenzyme M reductase from Methanothermobacter marburgensis is described. The procedure is an accumulation of almost 30 years
European journal of biochemistry, 193(1), 255-261 (1990-10-05)
The reduction of the heterodisulfide of coenzyme M (H-S-CoM) and 7-mercaptoheptanoyl-L-threonine phosphate (H-S-HTP) is a key reaction in the metabolism of methanogenic bacteria. The heterodisulfide reductase catalyzing this step was purified 80-fold to apparent homogeneity from Methanobacterium thermoautotrophicum. The native
Archives of biochemistry and biophysics, 345(2), 299-304 (1997-10-06)
The biochemical mechanism for the formation of the amide bond in N-(7-mercaptoheptanoyl)-L-threonine phosphate (HS-HTP) has been studied by measuring the incorporation of L-[3-(3)H]threonine into N-(7-mercaptoheptanoyl)-L-threonine (HS-HT) by cell extracts (CE) of Methanosarcina thermophila incubated with different precursors. Synthesis of HS-HT
European journal of biochemistry, 217(2), 587-595 (1993-10-15)
Methyl-coenzyme M reductase (MCR) catalyses the methane-forming step in the energy metabolism of methanogenic Archaea. It brings about the reduction of methyl-coenzyme M (CH3-S-CoM) by 7-mercaptoheptanoylthreonine phosphate (H-S-HTP). Methanobacterium thermoautotrophicum contains two isoenzymes of MCR, designated MCR I and MCR
Proceedings of the National Academy of Sciences of the United States of America, 88(10), 4099-4103 (1991-05-15)
Inactive 2-(methylthio)ethanesulfonic acid (CH3-S-CoM) reductase was partially activated by exposure to light. This simplified system replaces the complex enzymatic system of protein components A2, A3a, A3b, and ATP, which previously represented the only available means of reactivating the enzyme. Components
Notre équipe de scientifiques dispose d'une expérience dans tous les secteurs de la recherche, notamment en sciences de la vie, science des matériaux, synthèse chimique, chromatographie, analyse et dans de nombreux autres domaines..