Pular para o conteúdo
Merck
  • Divergent metabolic phenotype between two sisters with congenital generalized lipodystrophy due to double AGPAT2 homozygous mutations. a clinical, genetic and in silico study.

Divergent metabolic phenotype between two sisters with congenital generalized lipodystrophy due to double AGPAT2 homozygous mutations. a clinical, genetic and in silico study.

PloS one (2014-02-06)
Víctor A Cortés, Susan V Smalley, Denisse Goldenberg, Carlos F Lagos, María I Hodgson, José L Santos
RESUMO

Congenital generalized lipodystrophy (CGL) is a rare autosomal recessive disorder characterized by extreme reduction of white adipose tissue (WAT) mass. CGL type 1 is the most frequent form and is caused by mutations in AGPAT2. Genetic and clinical studies were performed in two affected sisters of a Chilean family. These patients have notoriously dissimilar metabolic abnormalities that correlate with differential levels of circulating leptin and soluble leptin receptor fraction. Sequencing of AGPAT2 exons and exon-intron boundaries revealed two homozygous mutations in both sisters. Missense mutation c.299G>A changes a conserved serine in the acyltransferase NHX4D motif of AGPAT2 (p.Ser100Asn). Intronic c.493-1G>C mutation destroy a conserved splicing site that likely leads to exon 4 skipping and deletion of whole AGPAT2 substrate binding domain. In silico protein modeling provided insights of the mechanisms of lack of catalytic activity owing to both mutations.