Pular para o conteúdo
Merck

Two-dimensional nanosheets produced by liquid exfoliation of layered materials.

Science (New York, N.Y.) (2011-02-05)
Jonathan N Coleman, Mustafa Lotya, Arlene O'Neill, Shane D Bergin, Paul J King, Umar Khan, Karen Young, Alexandre Gaucher, Sukanta De, Ronan J Smith, Igor V Shvets, Sunil K Arora, George Stanton, Hye-Young Kim, Kangho Lee, Gyu Tae Kim, Georg S Duesberg, Toby Hallam, John J Boland, Jing Jing Wang, John F Donegan, Jaime C Grunlan, Gregory Moriarty, Aleksey Shmeliov, Rebecca J Nicholls, James M Perkins, Eleanor M Grieveson, Koenraad Theuwissen, David W McComb, Peter D Nellist, Valeria Nicolosi
RESUMO

If they could be easily exfoliated, layered materials would become a diverse source of two-dimensional crystals whose properties would be useful in applications ranging from electronics to energy storage. We show that layered compounds such as MoS(2), WS(2), MoSe(2), MoTe(2), TaSe(2), NbSe(2), NiTe(2), BN, and Bi(2)Te(3) can be efficiently dispersed in common solvents and can be deposited as individual flakes or formed into films. Electron microscopy strongly suggests that the material is exfoliated into individual layers. By blending this material with suspensions of other nanomaterials or polymer solutions, we can prepare hybrid dispersions or composites, which can be cast into films. We show that WS(2) and MoS(2) effectively reinforce polymers, whereas WS(2)/carbon nanotube hybrid films have high conductivity, leading to promising thermoelectric properties.

MATERIAIS
Número do produto
Marca
Descrição do produto

Sigma-Aldrich
Molybdenum(IV) sulfide, nanopowder, 90 nm diameter (APS), 99% trace metals basis