Pular para o conteúdo
Merck
  • Fluorescence emission spectroscopy of 1,4-dihydroxyphthalonitrile. A method for determining intracellular pH in cultured cells.

Fluorescence emission spectroscopy of 1,4-dihydroxyphthalonitrile. A method for determining intracellular pH in cultured cells.

Biophysical journal (1985-09-01)
I Kurtz, R S Balaban
RESUMO

We have developed new methodology for measuring intracellular pH (pHi) in cultured cell monolayers and epithelia by analyzing the emission spectra of the trapped fluorescent pH probe, 1,4-dihydroxyphthalonitrile (1,4-DHPN). This compound is unique since both its acid and base forms possess different fluorescence emission characteristics that can be used to quantitate pHi. The fluorescence difference spectrum between an acid and alkaline solution of 1,4-DHPN has a maximum at 455 nm and a minimum at 512 nm. By determining the ratio of the intensity at these two wavelengths as a function of pH, a calibration curve was constructed. Since the two intensities are determined simultaneously, the measurement is independent of dye concentration, bleaching, and intensity fluctuation of the excitation source. Furthermore, analysis of the emission spectra permitted the detection of light scattering, binding effects, and chemical modification of the probe. A microspectrofluorometer was constructed to analyze low light level emission spectra from intracellular 1,4-DHPN. The instrument consists of a modified Leitz inverted microscope (E. Leitz, Inc., Rockleigh, NJ) with a Ploem illuminator adapted for broadband excitation and objective focusing capability. The emission spectra were collected by focusing the fluorescence from the cell onto the entrance slit of an imaging monochromator, which was scanned by a SIT camera interfaced with a computer. This permitted the acquisition of fluorescence emission spectra extending from 391-588 nm in approximately 33 ms. pHi measured in the cultured toad kidney epithelial cell line, A6, was 7.49 +/- 0.04 (n = 12) with an external pH of 7.6. A6 cells were found to regulate pHi in response to both acute acid and alkali loads and maintained pHi relatively constant over a wide range of external pH values. The technique described in this report overcomes several of the difficulties encountered with other fluorescent pH probes where excitation spectroscopy is required to monitor pH.

MATERIAIS
Número do produto
Marca
Descrição do produto

Sigma-Aldrich
2,3-Dicyanohydroquinone, 98%