Pular para o conteúdo
Merck
  • A new model for multiply charged adduct formation between peptides and anions in electrospray mass spectrometry.

A new model for multiply charged adduct formation between peptides and anions in electrospray mass spectrometry.

Journal of the American Society for Mass Spectrometry (2011-10-15)
Xiaohua Liu, Richard B Cole
RESUMO

A new model has been developed to account for adduct formation on multiply charged peptides observed in negative ion electrospray mass spectrometry. To obtain a stable adduct, the model necessitates an approximate matching of apparent gas-phase basicity (GB(app)) of a given proton bearing site on the peptide with the gas-phase basicity (GB) of the anion attaching at that site. Evidence supporting the model is derived from the fact that for [Glu] Fibrinopeptide B, higher GB anions dominated in adducts observed at higher negative charge states, whereas lower GB anions appeared predominately in lower charge state adducts. Singly charged adducts were only observed for lower GB anions: HSO(4)(-), I(-), CF(3)COO(-). Ions that have medium GBs (NO(3) (-), Br(-), H(2)PO(4)(-)) only form adducts having -2 charge states, whereas Cl(-) (higher GB) can form adducts having -3 charge states. The model portends that (1) carboxylate groups are much more basic than available amino groups; (2) apparent GBs of the various carboxylate groups on peptides do not vary substantially from one another; and (3) apparent GBs of the individual carboxylate and amino sites do not behave independently. This model was developed for negative ion attachment but an analogous mechanism is also proposed for the positive ion mode wherein (1) binding of a neutral at an amino site polarizes this amino group, but hardly affects apparent GBs of other sites; (2) proton addition (charge state augmentation) at one site can decrease the instrinsic GBs of other potential protonation sites and lower their apparent GBs.