Pular para o conteúdo
Merck
  • S2' substrate specificity and the role of His110 and His111 in the exopeptidase activity of human cathepsin B.

S2' substrate specificity and the role of His110 and His111 in the exopeptidase activity of human cathepsin B.

The Biochemical journal (2002-01-23)
Joanne C Krupa, Sadiq Hasnain, Dorit K Nägler, Robert Ménard, John S Mort
RESUMO

The ability of the lysosomal cysteine protease cathepsin B to function as a peptidyldipeptidase (removing C-terminal dipeptides) has been attributed to the presence of two histidine residues (His(110) and His(111)) present in the occluding loop, an extra peptide segment located in the primed side of the active-site cleft. Whereas His(111) is unpaired, His(110) is present as an ion pair with Asp(22) on the main body of the protease. This ion pair appears to act as a latch to hold the loop in a closed position. The exopeptidase activity of cathepsin B, examined using quenched fluorescence substrates, was shown to have a 20-fold preference for aromatic side chains in the P2' position relative to glutamic acid as the least favourable residue. Site-directed mutagenesis demonstrated that His(111) makes a positive 10-fold contribution to the exopeptidase activity, whereas His(110) is critical for this action with the Asp(22)-His(110) ion pair stabilizing the electrostatic interaction by a maximum of 13.9 kJ/mol (3.3 kcal/mol). These studies showed that cathepsin B is optimized to act as an exopeptidase, cleaving dipeptides from protein substrates in a successive manner, because of its relaxed specificity in P2' and its other subsites.