Pular para o conteúdo
Merck
  • Investigation on the mechanisms of genotoxicity of butadiene, styrene and their combination in human lymphocytes using the Comet assay.

Investigation on the mechanisms of genotoxicity of butadiene, styrene and their combination in human lymphocytes using the Comet assay.

Mutation research (2009-05-12)
Eduardo Cemeli, Ekaterina Mirkova, Giorgia Chiuchiarelli, Elena Alexandrova, Diana Anderson
RESUMO

The toxicity of butadiene and styrene is exerted by their metabolites. Such metabolites have been extensively scrutinized at the in vitro level demonstrating evident genotoxic properties. In monitoring, a diverse range of outcomes has been produced. Additionally, epidemiological studies in rubber workers face difficulties of data interpretation due to the changeability and multiple exposures of the workers as well as to confounding factors inherent to the cohorts. Nevertheless, toxicity has been associated with a significant trend of increasing the risk of leukaemia in employees at the styrene-butadiene rubber industry. Thus, further effort must be made to distinguish the exposures to each chemical over time and to characterize their interrelationships. The present investigation focuses on the effects and mechanisms of damage of the mixture styrene-butadiene by examining its metabolites: styrene oxide (SO), butadiene monoepoxide (BME) and butadiene diepoxide (BDE) respectively. The in vitro Comet assay on frozen lymphocytes has been employed to ascertain the DNA damage patterns for the styrene-butadiene metabolites combined and on their own. Different patterns were observed for the mixture and each of its components. This study has also led to determining the mechanism of damage of the mixture and the compounds. With regard to the presence of reactive oxygen species (ROS), co-treatment with catalase does not modulate the genotoxicity of the mixture but it does modulate its components. The outcomes also indicate that the mixture induces cross-links and this is due to the influence of BDE in the mixture, being more evident as the concentration of BDE increases. An investigation on the sensitivity of lymphocytes from occupationally un/exposed subjects to in vitro exposure of the mixture and its components revealed that occupationally exposed subjects had a substantially higher background of DNA damage and a lower sensitivity to the metabolites of styrene, 1,3-butadiene and its mixture.

MATERIAIS
Número do produto
Marca
Descrição do produto

Sigma-Aldrich
3,4-Epoxy-1-butene, 98%