Pular para o conteúdo
Merck
  • Muscarinic M5 receptors trigger acetylcholine-induced Ca2+ signals and nitric oxide release in human brain microvascular endothelial cells.

Muscarinic M5 receptors trigger acetylcholine-induced Ca2+ signals and nitric oxide release in human brain microvascular endothelial cells.

Journal of cellular physiology (2018-09-08)
Estella Zuccolo, Umberto Laforenza, Sharon Negri, Laura Botta, Roberto Berra-Romani, Pawan Faris, Giorgia Scarpellino, Greta Forcaia, Giorgia Pellavio, Giulio Sancini, Francesco Moccia
RESUMO

Basal forebrain neurons control cerebral blood flow (CBF) by releasing acetylcholine (Ach), which binds to endothelial muscarinic receptors to induce nitric (NO) release and vasodilation in intraparenchymal arterioles. Nevertheless, the mechanism whereby Ach stimulates human brain microvascular endothelial cells to produce NO is still unknown. Herein, we sought to assess whether Ach stimulates NO production in a Ca2+ -dependent manner in hCMEC/D3 cells, a widespread model of human brain microvascular endothelial cells. Ach induced a dose-dependent increase in intracellular Ca2+ concentration ([Ca2+ ]i ) that was prevented by the genetic blockade of M5 muscarinic receptors (M5-mAchRs), which was the only mAchR isoform coupled to phospholipase Cβ (PLCβ) present in hCMEC/D3 cells. A comprehensive real-time polymerase chain reaction analysis revealed the expression of the transcripts encoding for type 3 inositol-1,4,5-trisphosphate receptors (InsP3 R3), two-pore channels 1 and 2 (TPC1-2), Stim2, Orai1-3. Pharmacological manipulation showed that the Ca2+ response to Ach was mediated by InsP3 R3, TPC1-2, and store-operated Ca2+ entry (SOCE). Ach-induced NO release, in turn, was inhibited in cells deficient of M5-mAchRs. Likewise, Ach failed to increase NO levels in the presence of l-NAME, a selective NOS inhibitor, or BAPTA, a membrane-permeant intracellular Ca2+ buffer. Moreover, the pharmacological blockade of the Ca2+ response to Ach also inhibited the accompanying NO production. These data demonstrate for the first time that synaptically released Ach may trigger NO release in human brain microvascular endothelial cells by stimulating a Ca2+ signal via M5-mAchRs.

MATERIAIS
Número do produto
Marca
Descrição do produto

Sigma-Aldrich
Coquetel Inibidor de Protease, for use with mammalian cell and tissue extracts, DMSO solution
Sigma-Aldrich
Coquetel inibidor de fosfatase 2, aqueous solution (dark coloration may develop upon storage, which does not affect the activity)
Sigma-Aldrich
Coquetel inibidor de fosfatase 3, DMSO solution
Sigma-Aldrich
Anticorpo anti-IgG de coelho de cabra, conjugado com peroxidase, 1 mg/mL (after reconstitution), Chemicon®
Sigma-Aldrich
Anti-STIM2 (ab1) antibody produced in rabbit, affinity isolated antibody, buffered aqueous solution