Pular para o conteúdo
Merck
  • Effect of antioxidants coenzyme Q10 and β-carotene on the cytotoxicity of vemurafenib against human malignant melanoma.

Effect of antioxidants coenzyme Q10 and β-carotene on the cytotoxicity of vemurafenib against human malignant melanoma.

Oncology letters (2021-02-13)
Changkun Hu, Yuan Huang, Peixiao Luo, Yixin Yang
RESUMO

Melanoma is a type of highly invasive skin cancer derived from melanocytes with poor prognosis. Vemurafenib (PLX4032) is a clinically approved targeted therapeutic for BRAF mutant melanoma that has a high therapeutic response rate and significantly prolongs the overall survival time of patients with melanoma. Antioxidants have been widely used as supplements for cancer prevention and for decreasing the side effects of cancer therapy. However, antioxidants can also protect cancer cells from oxidative stress and promote cancer growth and progression. The present study aimed to examine the effect of the antioxidants coenzyme Q10 (CoQ10) and β-carotene on melanoma cell growth and invasiveness and on the cytotoxicity of vemurafenib against both vemurafenib-sensitive (SK-MEL-28) and vemurafenib-resistant (A2058) human malignant melanoma cell lines. MTS assay and wound-healing assay demonstrated that CoQ10 alone significantly reduced the viability and migration of melanoma cells, respectively, and synergistically worked with vemurafenib to decrease the viability and migration of human melanoma cells. In contrast, MTS assay and flow cytometry revealed that β-carotene alone did not affect the viability and apoptosis induction of melanoma cells; however, it inhibited cell migration and invasiveness. Wound-healing and Transwell assay demonstrated that β-carotene alleviated the cytotoxicity of vemurafenib and mitigated the inhibitory effect of vemurafenib on cell migration and invasion. Both CoQ10 and β-carotene protected melanoma cells from undergoing apoptosis induced by vemurafenib. Immunoblotting demonstrated that β-carotene at physiological concentration worked synergistically with vemurafenib to suppress the Ras-Raf-Mek-Erk intracellular signaling pathway. The present study aimed to add to the evidence of the in vitro effects of CoQ10 and β-carotene on the antimelanoma effects of vemurafenib.

MATERIAIS
Número do produto
Marca
Descrição do produto

Sigma-Aldrich
β-Carotene, synthetic, ≥93% (UV), powder