Pular para o conteúdo
Merck
  • Effect of symmetry and metal nanoparticles on the photophysicochemical and photodynamic therapy properties of cinnamic acid zinc phthalocyanine.

Effect of symmetry and metal nanoparticles on the photophysicochemical and photodynamic therapy properties of cinnamic acid zinc phthalocyanine.

Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy (2019-02-15)
Gauta Gold Matlou, Muthumuni Managa, Tebello Nyokong
RESUMO

In this study, a novel asymmetric cinnamic acid zinc phthalocyanine (ZnPc, 1) containing three tert-butyl substituents is reported. The asymmetric ZnPc (1) is further linked to amino functionalized magnetic nanoparticles (AMNPs) (1-AMNPs) and to cysteine functionalized silver nanoparticles (cys-AgNPs) (1-cys-AgNPs) through an amide bond. 1-AMNPs and 1-cys-AgNPs improved the triplet and singlet oxygen quantum yields of complex 1, this was also observed with the previously reported 2-AMNPs when compared to 2 while 3-AMNPs yielded an unexpected decrease in triplet quantum yield as compared to 3. The silver nanoparticles (1-cys-AgNPs) had a better effect on improving the singlet oxygen quantum yield of complex 1 than the magnetic nanoparticles (1-AMNPs). The Pcs and conjugates recorded low cell cytotoxicity in the dark and high photocytotoxicity against MCF-7 cells in-vitro. MCF-7 cell viabilities of less than 50% were recorded at 80 μg/mL making the Pcs and conjugates under study potential candidates for use as photosensitizers in cancer therapy.