Pular para o conteúdo
Merck
  • Inactivation of Stat3 and crosstalk of miRNA155-5p and FOXO3a contribute to the induction of IGFBP1 expression by beta-elemene in human lung cancer.

Inactivation of Stat3 and crosstalk of miRNA155-5p and FOXO3a contribute to the induction of IGFBP1 expression by beta-elemene in human lung cancer.

Experimental & molecular medicine (2018-09-14)
Fang Zheng, Qing Tang, Xiao-Hua Zheng, JingJing Wu, HaiDing Huang, Haibo Zhang, Swei Sunny Hann
RESUMO

β-Elemene, an active component of natural plants, has been shown to exhibit anticancer properties. However, the detailed mechanism underlying these effects has yet to be determined. In this study, we show that β-elemene inhibits the growth of lung cancer cells. Mechanistically, we found that β-elemene decreased the phosphorylation of signal transducer and activator of transcription 3 (Stat3) and miRNA155-5p mRNA but induced the protein expression of human forkhead box class O (FOXO)3a; the latter two were abrogated in cells with overexpressed Stat3. Notably, miRNA155-5p mimics reduced FOXO3a luciferase reporter activity in the 3-UTR region and protein expression, whereas overexpressed FOXO3a countered the reduction of the miRNA155-5p levels by β-elemene. Moreover, β-elemene increased the mRNA and protein expression levels as well as promoter activity of insulin-like growth factor-binding protein 1 (IGFBP1); this finding was not observed in cells with a silenced FOXO3a gene and miRNA155-5p mimics. Finally, silencing of IGFBP1 blocked β-elemene-inhibited cell growth. Similar findings were observed in vivo. In summary, our results indicate that β-elemene increases IGFBP1 gene expression via inactivation of Stat3 followed by a reciprocal interaction between miRNA155-5p and FOXO3a. This effect leads to inhibition of human lung cancer cell growth. These findings reveal a novel molecular mechanism underlying the inhibitory effects of β-elemene on lung cancer cells.

MATERIAIS
Número do produto
Marca
Descrição do produto

Sigma-Aldrich
MISSION® esiRNA, targeting human IGFBP1