Skip to Content
Merck
All Photos(2)

Documents

790508

Sigma-Aldrich

Iron oxide(II,III), magnetic nanoparticles solution

5 nm avg. part. size (TEM), PEG functionalized, 1 mg/mL Fe in H2O, dispersion

Synonym(s):

Fe NP PEG, FexOy, Magnetic iron oxide nanocrystals, Magnetite, Superparamagnetic iron oxide nanoparticles

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
Fe3O4
CAS Number:
Molecular Weight:
231.53
MDL number:
UNSPSC Code:
12352302
PubChem Substance ID:
NACRES:
NA.23

form

dispersion
nanoparticles

concentration

1 mg/mL Fe in H2O

magnetization

>25 emu/g (at room temperature; under 4500 Oe)

color

brown

avg. part. size

5 nm (TEM)

density

0.995 g/mL at 25 °C
~1 g/mL at 25 °C

functional group

PEG

storage temp.

2-8°C

SMILES string

O=[Fe].O=[Fe]O[Fe]=O

InChI

1S/3Fe.4O

InChI key

SZVJSHCCFOBDDC-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

Concentration 5mg/ml includes total weight nanocrystals plus ligands.

Application

These magnetic nanoparticles are typically used in imaging or as contrast agents. The surface functionality allows for different ligation or further functionalization.

Do not freeze.

Legal Information

Product of Ocean Nanotech; LLC.

Storage Class Code

12 - Non Combustible Liquids

WGK

WGK 2

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Natalia Janik-Olchawa et al.
Scientific reports, 10(1), 15447-15447 (2020-09-24)
In the paper, the results of the first regular studies of ultra-small iron oxide nanoparticles (IONPs) toxicity in vitro were presented. The influence of PEG-coated NPs with 5 nm magnetite core on six different cell lines was examined. These were: human
Anna Lohße et al.
Journal of bacteriology, 196(14), 2658-2669 (2014-05-13)
Biosynthesis of bacterial magnetosomes, which are intracellular membrane-enclosed, nanosized magnetic crystals, is controlled by a set of >30 specific genes. In Magnetospirillum gryphiswaldense, these are clustered mostly within a large conserved genomic magnetosome island (MAI) comprising the mms6, mamGFDC, mamAB
Aude Picard et al.
Nature communications, 6, 6277-6277 (2015-02-19)
Twisted stalks are organo-mineral structures produced by some microaerophilic Fe(II)-oxidizing bacteria at O2 concentrations as low as 3 μM. The presence of these structures in rocks having experienced a diagenetic history could indicate microbial Fe(II)-oxidizing activity as well as localized
Yingjie Li et al.
Journal of bacteriology, 196(14), 2552-2562 (2014-05-06)
The biomineralization of magnetosomes in Magnetospirillum gryphiswaldense and other magnetotactic bacteria occurs only under suboxic conditions. However, the mechanism of oxygen regulation and redox control of biosynthesis of the mixed-valence iron oxide magnetite [FeII(FeIII)2O4] is still unclear. Here, we set
Tianyuzi Li et al.
International journal of nanomedicine, 10, 3779-3790 (2015-06-18)
Regimen adherence, systemic toxicities, and limited drug penetrance to viral reservoirs are obstacles limiting the effectiveness of antiretroviral therapy (ART). Our laboratory's development of the monocyte-macrophage-targeted long-acting nanoformulated ART (nanoART) carriage provides a novel opportunity to simplify drug-dosing regimens. Progress

Articles

Iron oxide nanoparticles find diverse applications in magnetic data storage, biosensing, and drug delivery due to their properties.

Professor Mitsuhiro Ebara provides insights on several types of smart nanofiber mesh systems that have been explored for different drug delivery purposes.

The recent emergence of a number of highly functional nanomaterials has enabled new approaches to the understanding, diagnosis, and treatment of cancer.

Prof. Yadong Yin discusses various synthesis methods of magnetite nanocrystals and their applications in different fields.

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service