Drug metabolism and disposition: the biological fate of chemicals, 12(5), 565-576 (1984-09-01)
Incubations of 3'-hydroxyacetanilide (3HAA) with hepatic microsomal preparations from phenobarbital-pretreated mice led to the formation of three products of aromatic hydroxylation, viz. 2',5'-, 3',4'-, and 2',3'-dihydroxyacetanilide, which were identified by GC/MS techniques and quantified by GLC analysis. NADPH-dependent covalent binding
Identification of hepatic protein targets of the reactive metabolites of the non-hepatotoxic regioisomer of acetaminophen, 3'-hydroxyacetanilide, in the mouse in vivo using two-dimensional gel electrophoresis and mass spectrometry.
Y Qiu et al.
Advances in experimental medicine and biology, 500, 663-673 (2002-01-05)
Acetaminophen (AAP), a widely used analgesic drug, can damage various organs when taken in large doses. In this study, we investigate whether AAP causes cell damage by altering the early signaling pathways associated with cell death and survival. AAP caused
Chemical research in toxicology, 8(3), 403-413 (1995-04-01)
Acetaminophen (4'-hydroxyacetanilide), a widely used analgesic/antipyretic drug, is hepatotoxic in large doses, whereas the m-hydroxy isomer of acetaminophen, 3'-hydroxyacetanilide, is not hepatotoxic. Both are oxidized by mouse liver cytochromes P-450 to reactive metabolites that bind covalently to hepatic proteins. Because
Chemical research in toxicology, 2(1), 41-45 (1989-01-01)
3'-Hydroxyacetanilide (AMAP) is a nonhepatotoxic regioisomer of acetaminophen (APAP) that nonetheless does form reactive metabolites which bind to hepatic proteins. Because differences in the nature of reactive metabolites formed from AMAP and APAP may explain differences in their propensity to
Notre équipe de scientifiques dispose d'une expérience dans tous les secteurs de la recherche, notamment en sciences de la vie, science des matériaux, synthèse chimique, chromatographie, analyse et dans de nombreux autres domaines..