Skip to Content
Merck
All Photos(1)

Key Documents

50187

Sigma-Aldrich

Ammonium 2-(methylthio)ethanesulfonate

≥97.0% (TLC)

Synonym(s):

Methyl coenzyme M ammonium salt

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C3H11NO3S2
CAS Number:
Molecular Weight:
173.25
MDL number:
UNSPSC Code:
12352106
PubChem Substance ID:
NACRES:
NA.25
Pricing and availability is not currently available.

Quality Level

Assay

≥97.0% (TLC)

SMILES string

N.CSCCS(O)(=O)=O

InChI

1S/C3H8O3S2.H3N/c1-7-2-3-8(4,5)6;/h2-3H2,1H3,(H,4,5,6);1H3

InChI key

FSGSBLDVKBYXIK-UHFFFAOYSA-N

Application

Ammonium 2-(methylthio)ethanesulfonate (Methyl coenzyme M) is converted into methane by the enzyme Methyl-coenzyme M reductase (MCR) derived from methanogenic archaea. Methy-coenzyme M is used in studies on methanogenic (methane-producing) enzymatic processes.

Packaging

Bottomless glass bottle. Contents are inside inserted fused cone.

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Karen G Lloyd et al.
Environmental microbiology, 13(9), 2548-2564 (2011-08-03)
Uncultured ANaerobic MEthanotrophic (ANME) archaea are often assumed to be obligate methanotrophs that are incapable of net methanogenesis, and are therefore used as proxies for anaerobic methane oxidation in many environments in spite of uncertainty regarding their metabolic capabilities. Anaerobic
U Deppenmeier et al.
European journal of biochemistry, 186(1-2), 317-323 (1989-12-08)
Methane formation from 2-(methylthio)-ethanesulfonate (methyl-CoM) and H2 by the soluble fraction from the methanogenic bacterium strain Gö1 was stimulated up to tenfold by the addition of the membrane fraction. This stimulation was observed with membranes from various methanogenic species belonging
Prem Prashant Chaudhary et al.
Journal of microbiology (Seoul, Korea), 49(4), 558-561 (2011-09-03)
The aim of the present study was to decipher the diversity of methanogens in rumen of Murrah buffaloes so that effective strategies can be made in order to mitigate methane emission from these methanogens. In the present study diversity of
L G Bonacker et al.
European journal of biochemistry, 217(2), 587-595 (1993-10-15)
Methyl-coenzyme M reductase (MCR) catalyses the methane-forming step in the energy metabolism of methanogenic Archaea. It brings about the reduction of methyl-coenzyme M (CH3-S-CoM) by 7-mercaptoheptanoylthreonine phosphate (H-S-HTP). Methanobacterium thermoautotrophicum contains two isoenzymes of MCR, designated MCR I and MCR
U Ermler et al.
Science (New York, N.Y.), 278(5342), 1457-1462 (1997-12-31)
Methyl-coenzyme M reductase (MCR), the enzyme responsible for the microbial formation of methane, is a 300-kilodalton protein organized as a hexamer in an alpha2beta2gamma2 arrangement. The crystal structure of the enzyme from Methanobacterium thermoautotrophicum, determined at 1.45 angstrom resolution for

Questions

Reviews

No rating value

Active Filters

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service