Skip to Content
Merck
All Photos(4)

Key Documents

913294

Sigma-Aldrich

keYPhos

Umicore

Synonym(s):

CyYPhos(Me)PCy2, Tricyclohexyl(1-(dicyclohexyl-phosphanyl)ethylidene)-phosphane

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C32H58P2
CAS Number:
Molecular Weight:
504.75
UNSPSC Code:
12352001
NACRES:
NA.22

product name

keYPhos,

form

powder

Quality Level

reaction suitability

reagent type: ligand

mp

167-169 °C

functional group

phosphine

General description

keYPhosis an ylide-functionalized phosphine ligand developed in the lab of Prof. V. Gessner at the Ruhr-University Bochum with demonstrated uses in Pd-catalyzed cross coupling reactions, including the arylation of ketones and arylation of amines. keYPhos is part of the YPhos family of ligands, also containing the joYPhos and trYPhos ligands.

Application

The electron-rich and sterically demanding keYPhos has a methyl group in the ylide-backbone and is a valuable ligand for the palladium catalyzed coupling of aryl chlorides with primary and secondary alkyl and aryl amines at room temperature. keYPhoshas been used in the gold(I)-catalyzed hydroamination of acetylene, and has shown to be effective in a range of Buchwald-Hartwig amination reactions. The strong electron-donor strength and sterically demanding nature of the ligand has been shown to increase the rate of formation of the catalytically active mono-phosphine palladium species, often leading to decreased reaction times or allowing the use of lower reaction temperatures.

Learn more about ylide-functionalized phosphines (YPhos)

Features and Benefits

Advantages of the keYPhosligand over less electron rich ligand sources include, increased substrate scope in Buchwald-Hartwig amination reactions, including aryl chlorides, the use of more mild reaction conditions and improved activity in in C-N and C-C cross coupling reactions. keYPhos has been shown to perform well with common palladium sources such as Pd2(dba)3, Pd(OAc)2, [Pd(allyl)Cl]2 or [Pd(cinamyl)Cl]2.

Legal Information

Product of Umicore

This product, its manufacturing or use, is the subject of one or more issued or pending U.S. Patents (and foreign equivalents) owned or controlled by Umicore PMC. The purchase of this product from Umicore PMC through Sigma-Aldrich, its affiliates or their authorized distributors conveys to the buyer a limited, one-time, non-exclusive, non-transferable, non-assignable license. Buyer′s use of this product may infringe patents owned or controlled by third parties. It is the sole responsibility of buyer to ensure that its use of the product does not infringe the patent rights of third parties or exceed the scope of the license granted herein.

For any further information on product please refer to your local Umicore PMC contact at www.pmc.umicore.com.
Yphos is a trademark of Umicore AG & Co. KG

related product

Product No.
Description
Pricing

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Sorry, we don't have COAs for this product available online at this time.

If you need assistance, please contact Customer Support.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Jens Tappen et al.
Chemistry (Weinheim an der Bergstrasse, Germany), 26(19), 4281-4288 (2020-01-24)
Palladium allyl, cinnamyl, and indenyl complexes with the ylide-substituted phosphines Cy3 P+ -C- (R)PCy2 (with R=Me (L1) or Ph (L2)) and Cy3 P+ -C- (Me)PtBu2 (L3) were prepared and applied as defined precatalysts in C-N coupling reactions. The complexes are
Thorsten Scherpf et al.
Angewandte Chemie (International ed. in English), 57(39), 12859-12864 (2018-06-05)
Phosphines are important ligands in homogenous catalysis and have been crucial for many advances, such as in cross-coupling, hydrofunctionalization, or hydrogenation reactions. Herein we report the synthesis and application of a novel class of phosphines bearing ylide substituents. These phosphines
Sébastien Lapointe et al.
Accounts of chemical research, 55(5), 770-782 (2022-02-17)
The development of homogeneous catalysts is strongly connected to the design of new, sophisticated ligands, which resolve limitations of a given reaction protocol by manipulating the electronic properties of the metal and its spatial environment. Phosphines are a privileged class
Thorsten Scherpf et al.
Angewandte Chemie (International ed. in English), 59(46), 20596-20603 (2020-07-30)
Organolithium compounds are amongst the most important organometallic reagents and frequently used in difficult metallation reactions. However, their direct use in the formation of C-C bonds is less established. Although remarkable advances in the coupling of aryllithium compounds have been
Xiao-Qiang Hu et al.
Organic letters, 21(18), 7558-7562 (2019-08-31)
Ylide-functionalized phosphine (YPhos) ligands allow the palladium-catalyzed α-arylation of alkyl ketones with aryl chlorides with record setting activity. Using a cyclohexyl-substituted YPhos ligand, a wide range of challenging ketone substrates was efficiently and selectively monoarylated under mild conditions. A newly

Articles

Explore innovative palladium-catalyzed coupling reactions with ylide-substituted phosphines. Learn about their impressive capabilities, enabling milder conditions and access to aryl chlorides.

Explore innovative palladium-catalyzed coupling reactions with ylide-substituted phosphines. Learn about their impressive capabilities, enabling milder conditions and access to aryl chlorides.

YPhos ligands enable efficient palladium-catalyzed coupling reactions under mild conditions, enhancing the synthesis of complex organic molecules.

Explore innovative palladium-catalyzed coupling reactions with ylide-substituted phosphines. Learn about their impressive capabilities, enabling milder conditions and access to aryl chlorides.

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service