325171
Silicon nitride
predominantly α-phase, ≤10 micron
Sign Into View Organizational & Contract Pricing
All Photos(3)
About This Item
Recommended Products
Quality Level
form
powder
particle size
≤10 micron
density
3.44 g/mL at 25 °C (lit.)
SMILES string
N12[Si]34N5[Si]16N3[Si]25N46
InChI
1S/N4Si3/c1-5-2-6(1)3(5)7(1,2)4(5)6
InChI key
HQVNEWCFYHHQES-UHFFFAOYSA-N
Looking for similar products? Visit Product Comparison Guide
Storage Class Code
11 - Combustible Solids
WGK
nwg
Flash Point(F)
Not applicable
Flash Point(C)
Not applicable
Personal Protective Equipment
dust mask type N95 (US), Eyeshields, Gloves
Choose from one of the most recent versions:
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Customers Also Viewed
Optics express, 20(27), 29076-29089 (2012-12-25)
We report time domain observations of optical instability in high Q silicon nitride whispering gallery disk resonators. At low laser power the transmitted optical power through the disk looks chaotic. At higher power, the optical output settles into a stable
Chemical Society reviews, 42(1), 15-28 (2012-09-20)
This tutorial review will introduce and explore the fundamental aspects of nanopore (bio)sensing, fabrication, modification, and the emerging technologies and applications that both intrigue and inspire those working in and around the field. Although nanopores can be classified into two
Optics express, 20(25), 27420-27428 (2012-12-25)
Integration density, channel scalability, low switching energy and low insertion loss are the major prerequisites for on-chip WDM systems. A number of device geometries have already been demonstrated that fulfill these criteria, at least in part, but combining all of
Nanotechnology, 23(47), 475302-475302 (2012-10-30)
In recent years, the concept of nanopore sensing has matured from a proof-of-principle method to a widespread, versatile technique for the study of biomolecular properties and interactions. While traditional nanopore devices based on a nanopore in a single layer membrane
Optics express, 21(4), 5041-5052 (2013-03-14)
In this paper, we present two four-port optical circulators for TE and TM modes, respectively. Exploiting the recent technological development concerning Ce:YIG pulse laser deposition on silicon nitride platform, we design two integrated circulators, which can be used to implement
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service