Direkt zum Inhalt
Merck
  • Role of membrane curvature in mechanoelectrical transduction: ion carriers nonactin and valinomycin sense changes in integral bending energy.

Role of membrane curvature in mechanoelectrical transduction: ion carriers nonactin and valinomycin sense changes in integral bending energy.

Biochimica et biophysica acta (2006-10-31)
V Gh Shlyonsky, V S Markin, I Andreeva, S E Pedersen, S A Simon, D J Benos, I I Ismailov
ZUSAMMENFASSUNG

We describe the phenomenon of mechanoelectrical transduction in macroscopic lipid bilayer membranes modified by two cation-selective ionophores, valinomycin and nonactin. We found that bulging these membranes, while maintaining the membrane tension constant, produced a marked supralinear increase in specific carrier-mediated conductance. Analyses of the mechanisms involved in mechanoelectrical transduction induced by the imposition of a hydrostatic pressure gradient or by an amphipathic compound chlorpromazine reveal similar changes in the charge carrier motility and carrier reaction rates at the interface(s). Furthermore, the relative change in membrane conductance was independent of membrane diameter, but was directly proportional to the square of membrane curvature, thus relating the observed phenomena to the bilayer bending energy. Extrapolated to biological membranes, these findings indicate that ion transport in cells can be influenced simply by changing shape of the membrane, without a change in membrane tension.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Nonactin, from Streptomyces griseus, ≥98.0% (Total homologs, HPLC)
Sigma-Aldrich
Ammonium-Ionophor I, Selectophore, function tested, ≥98.0% ((Total homologs), HPLC)