Skip to Content
MilliporeSigma
All Photos(1)

Documents

16490

Sigma-Aldrich

Bromopyruvic acid

≥98.0%

Synonym(s):

3-Bromo-2-oxopropionic acid

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
BrCH2COCOOH
CAS Number:
Molecular Weight:
166.96
Beilstein:
1746786
EC Number:
MDL number:
UNSPSC Code:
12352100
PubChem Substance ID:
NACRES:
NA.22

Quality Level

Assay

≥98.0%

form

(Powder or Crystals or Flakes)

mp

77-82 °C

solubility

water: soluble 1 g/10 mL, clear to very slightly hazy, colorless

storage temp.

2-8°C

SMILES string

OC(=O)C(=O)CBr

InChI

1S/C3H3BrO3/c4-1-2(5)3(6)7/h1H2,(H,6,7)

InChI key

PRRZDZJYSJLDBS-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

Bromopyruvic acid is an affinity label for cysteine residues†. It acts as cross-linker between nucleic acids and proteins. Kinetics of inactivation of pancreatic ribonuclease A by bromopyruvic acid has been investigated.
may contain traces of dibromopyruvic acid

Application

Bromopyruvic acid was used in the synthesis of imidazo[1,2-a]pyridine-2-carboxylic acids.

Other Notes

Affinity label for cysteine residues; Cross-linker between nucleic acids and proteins

Pictograms

Corrosion

Signal Word

Danger

Hazard Statements

Hazard Classifications

Eye Dam. 1 - Skin Corr. 1B

Storage Class Code

8A - Combustible corrosive hazardous materials

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Customers Also Viewed

M H Wang et al.
The Biochemical journal, 320 ( Pt 1), 187-192 (1996-11-15)
The kinetic theory of substrate reaction during the modification of enzyme activity [Duggleby (1986) J. Theor. Biol. 123, 67-80; Wang and Tsou (1990) J. Theor. Biol. 142, 531-549] has been applied to a study of the inactivation kinetics of ribonuclease
Ananda Herath et al.
Organic letters, 12(3), 412-415 (2009-12-30)
The first continuous flow synthesis of imidazo[1,2-a]pyridine-2-carboxylic acids directly from 2-aminopyridines and bromopyruvic acid has been developed, representing a significant advance over the corresponding in-flask method. The process was applied to the multistep synthesis of imidazo[1,2-a]pyridine-2-carboxamides, including a Mur ligase
I Kameshita et al.
Journal of biochemistry, 86(5), 1251-1257 (1979-11-01)
Phosphoenolpyruvate carboxylase [EC 4.1.1.31] from Escherichia coli W was alkylated by incubation with bromopyruvate, substrate analog, leading to irreversible inactivation. The reaction followed pseudo-first-order kinetics. Mg2+, an essential cofactor for catalysis, enhanced the inactivation, and the enhancing effect increased as
Kivanç Birsoy et al.
Nature genetics, 45(1), 104-108 (2012-12-04)
There is increasing evidence that oncogenic transformation modifies the metabolic program of cells. A common alteration is the upregulation of glycolysis, and efforts to target glycolytic enzymes for anticancer therapy are under way. Here, we performed a genome-wide haploid genetic
Paweł Lis et al.
Journal of bioenergetics and biomembranes, 44(1), 155-161 (2012-02-24)
We have investigated the cytotoxicity in Saccharomyces cerevisiae of the novel antitumor agent 3-bromopyruvate (3-BP). 3-BP enters the yeast cells through the lactate/pyruvate H(+) symporter Jen1p and inhibits cell growth at minimal inhibitory concentration of 1.8 mM when grown on

Articles

Warburg effect enhances glucose to lactate conversion in tumor cells, regardless of oxygen levels; impacting cancer metabolism since 1924.

Warburg effect enhances glucose to lactate conversion in tumor cells, regardless of oxygen levels; impacting cancer metabolism since 1924.

Warburg effect enhances glucose to lactate conversion in tumor cells, regardless of oxygen levels; impacting cancer metabolism since 1924.

Warburg effect enhances glucose to lactate conversion in tumor cells, regardless of oxygen levels; impacting cancer metabolism since 1924.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service