Saltar al contenido
Merck

Extracellular localization of catalase is associated with the transformed state of malignant cells.

Biological chemistry (2015-07-04)
Britta Böhm, Sonja Heinzelmann, Manfred Motz, Georg Bauer
RESUMEN

Oncogenic transformation is dependent on activated membrane-associated NADPH oxidase (NOX). However, the resultant extracellular superoxide anions are also driving the NO/peroxynitrite and the HOCl pathway, which eliminates NOX-expressing transformed cells through selective apoptosis induction. Tumor progression is dependent on dominant interference with intercellular apoptosis-inducing ROS signaling through membrane-associated catalase, which decomposes H2O2 and peroxynitrite and oxidizes NO. Particularly, the decomposition of extracellular peroxynitrite strictly requires membrane-associated catalase. We utilized small interfering RNA (siRNA)-mediated knockdown of catalase and neutralizing antibodies directed against the enzyme in combination with challenging H2O2 or peroxynitrite to determine activity and localization of catalase in cells from three distinct steps of multistage oncogenesis. Nontransformed cells did not generate extracellular superoxide anions and only showed intracellular catalase activity. Transformed cells showed superoxide anion-dependent intercellular apoptosis-inducing ROS signaling in the presence of suboptimal catalase activity in their membrane. Tumor cells exhibited tight control of intercellular apoptosis-inducing ROS signaling through a high local concentration of membrane-associated catalase. These data demonstrate that translocation of catalase to the outside of the cell membrane is already associated with the transformation step. A strong local increase in the concentration of membrane-associated catalase is achieved during tumor progression and is controlled by tumor cell-derived H2O2 and by transglutaminase.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Ácido clorhídrico, ACS reagent, 37%
Sigma-Aldrich
Ácido clorhídrico, ACS reagent, 37%
Sigma-Aldrich
Cloruro de hidrógeno solution, 4.0 M in dioxane
Sigma-Aldrich
Ácido clorhídrico solution, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Ácido clorhídrico, 37 wt. % in H2O, 99.999% trace metals basis
Sigma-Aldrich
Ácido clorhídrico, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., fuming, ≥37%, APHA: ≤10
Sigma-Aldrich
Ácido clorhídrico, 36.5-38.0%, BioReagent, for molecular biology
Sigma-Aldrich
Cloruro de hidrógeno solution, 2.0 M in diethyl ether
Sigma-Aldrich
Ácido clorhídrico, meets analytical specification of Ph. Eur., BP, NF, fuming, 36.5-38%
Sigma-Aldrich
Taurine, ≥99%
Supelco
Ácido clorhídrico solution, volumetric, 0.1 M HCl (0.1N), endotoxin free
Sigma-Aldrich
Manganese(II) chloride, powder and chunks, ≥99% trace metals basis
Sigma-Aldrich
Cloruro de hidrógeno solution, 1.0 M in diethyl ether
Sigma-Aldrich
Taurine, suitable for cell culture, meets USP testing specifications
Sigma-Aldrich
Ácido clorhídrico, puriss., 24.5-26.0%
Sigma-Aldrich
Ácido clorhídrico solution, ~6 M in H2O, for amino acid analysis
Sigma-Aldrich
Cloruro de hidrógeno solution, 3 M in cyclopentyl methyl ether (CPME)
Sigma-Aldrich
Ácido clorhídrico solution, 32 wt. % in H2O, FCC
Sigma-Aldrich
Manganese(II) chloride, beads, 98%
Sigma-Aldrich
Manganese(II) chloride, AnhydroBeads, −10 mesh, 99.99% trace metals basis
Sigma-Aldrich
Cloruro de hidrógeno solution, 1.0 M in acetic acid
Sigma-Aldrich
Taurine, BioUltra, ≥99.5% (T)
Sigma-Aldrich
4-(2-Aminoethyl)benzenesulfonyl fluoride hydrochloride, ≥97.0% (HPLC)
SAFC
Taurine
Sigma-Aldrich
Taurine, ≥98%, FG
Sigma-Aldrich
Manganese(II) chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis