Saltar al contenido
Merck

Sertraline-induced potentiation of the CYP3A4-dependent neurotoxicity of carbamazepine: an in vitro study.

Epilepsia (2015-02-07)
Chaitali Ghosh, Mohammad Hossain, Addison Spriggs, Arnab Ghosh, Gerald A Grant, Nicola Marchi, Emilio Perucca, Damir Janigro
RESUMEN

Drug toxicity is a hurdle to drug development and to clinical translation of basic research. Antiepileptic drugs such as carbamazepine (CBZ) and selective serotonin reuptake inhibitors such as sertraline (SRT) are commonly co-prescribed to patients with epilepsy and comorbid depression. Because SRT may interfere with cytochrome P450 (CYP) enzyme activity and CYPs have been implicated in the conversion of CBZ to reactive cytotoxic metabolites, we investigated in vitro models to determine whether SRT affects the neurotoxic potential of CBZ and the mechanisms involved. Human fetal brain-derived dopaminergic neurons, human brain microvascular endothelial cells (HBMECs), and embryonic kidney (HEK) cells were used to evaluate cytotoxicity of CBZ and SRT individually and in combination. Nitrite and glutathione (GSH) levels were measured with drug exposure. To validate the role of CYP3A4 in causing neurotoxicity, drug metabolism was compared to cell death in HEK CYP3A4 overexpressed and cells pretreated with the CYP3A4 inhibitor ketoconazole. In all cellular systems tested, exposure to CBZ (127 μM) or SRT (5 μM) alone caused negligible cytotoxicity. By contrast CBZ, tested at a much lower concentration (17 μM) in combination with SRT (5 μM), produced prominent cytotoxicity within 15 min exposure. In neurons and HBMECs, cytotoxicity was associated with increased nitrite levels, suggesting involvement of free radicals as a pathogenetic mechanism. Pretreatment of HBMECs with reduced GSH or with the GSH precursor N-acetyl-L-cysteine prevented cytotoxic response. In HEK cells, the cytotoxic response to the CBZ + SRT combination correlated with the rate of CBZ biotransformation and production of 2-hydroxy CBZ, further suggesting a causative role of reactive metabolites. In the same system, cytotoxicity was potentiated by overexpression of CYP3A4, and prevented by CYP3A4 inhibitor. These results demonstrate an unexpected neurotoxic interaction between CBZ and SRT, apparently related to increased CYP3A4-mediated production of reactive CBZ metabolites. The potential clinical implications of these findings are discussed.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Acetonitrilo, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Metanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Metanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Acetonitrilo, HPLC Plus, ≥99.9%
Sigma-Aldrich
Metanol, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Metanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Acetonitrilo, ACS reagent, ≥99.5%
Sigma-Aldrich
DAPI, for nucleic acid staining
Sigma-Aldrich
N-Acetyl-L-cysteine, BioReagent, suitable for cell culture
Sigma-Aldrich
Acetonitrilo, for HPLC, for UV, ≥99.9% (GC)
Sigma-Aldrich
Acetonitrilo, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Metanol, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Metanol, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
L-Glutatión reducido, suitable for cell culture, BioReagent, ≥98.0%, powder
Sigma-Aldrich
Metanol, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
Metanol, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
Acetonitrilo, suitable for HPLC-GC, ≥99.8% (GC)
Sigma-Aldrich
Metanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Metanol, BioReagent, ≥99.93%
Sigma-Aldrich
Metanol, Absolute - Acetone free
USP
Metanol, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Acetonitrilo, biotech. grade, ≥99.93%
USP
Acetylcysteine, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Metanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Acetonitrilo, anhydrous, 99.8%
Sigma-Aldrich
Metanol, anhydrous, 99.8%
Sigma-Aldrich
Ketoconazole, 99.0-101.0% (EP, titration)
Sigma-Aldrich
L-Glutatión reducido, ≥98.0%
Sigma-Aldrich
Metanol, puriss., meets analytical specification of Ph Eur, ≥99.7% (GC)
Sigma-Aldrich
Acetonitrilo, ReagentPlus®, 99%