Saltar al contenido
Merck
  • Neutrophil extracellular traps in ischemia-reperfusion injury-induced myocardial no-reflow: therapeutic potential of DNase-based reperfusion strategy.

Neutrophil extracellular traps in ischemia-reperfusion injury-induced myocardial no-reflow: therapeutic potential of DNase-based reperfusion strategy.

American journal of physiology. Heart and circulatory physiology (2014-12-21)
Lan Ge, Xin Zhou, Wen-Jie Ji, Rui-Yi Lu, Yan Zhang, Yi-Dan Zhang, Yong-Qiang Ma, Ji-Hong Zhao, Yu-Ming Li
RESUMEN

Emerging evidence suggests a potential role of neutrophil extracellular traps (NETs) in linking sterile inflammation and thrombosis. We hypothesized that NETs would be induced during myocardial ischemia-reperfusion (I/R), and NET-mediated microthrombosis may contribute to myocardial "no-reflow". Male Wistar rats were randomly divided into I/R control, DNase (DNase I, 20 μg/rat), recombinant tissue-type plasminogen activator (rt-PA, 420 μg/rat), DNase + rt-PA, and sham control groups after 45-min myocardial ischemia. In situ NET formation, the anatomic "no re-flow" area, and infarct size were evaluated immediately after 3 h of reperfusion. Long-term left ventricular (LV) functional and histological analyses were performed 45 days after operation. Compared with the I/R controls, the DNase + rt-PA group exhibited reduced NET density [8.38 ± 1.98 vs. 26.86 ± 3.07 (per 200 × field), P < 0.001] and "no-flow" area (15.22 ± 0.06 vs. 34.6 ± 0.05%, P < 0.05) in the ischemic region, as well as reduced infarct size (38.39 ± 0.05 vs. 71.00 ± 0.03%, P < 0.001). Additionally, compared with the I/R controls, DNase + rt-PA treatment significantly ameliorated I/R injury-induced LV remodeling (LV ejection fraction: 64.22 ± 3.37 vs. 33.81 ± 2.98%, P < 0.05; LV maximal slope of the LV systolic pressure increment: 3,785 ± 216 vs. 2,596 ± 299 mmHg/s, P < 0.05). The beneficial effect was not observed in rats treated with DNase I or rt-PA alone. Our study provides evidence for the existence of NETs in I/R-challenged myocardium and confirms the long-term benefit of a novel DNase-based reperfusion strategy (DNase I + rt-PA), which might be a promising option for the treatment of myocardial I/R injury and coronary no-reflow.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Bromuro de hexadeciltrimetilamonio, ≥98%
Sigma-Aldrich
Bromuro de hexadeciltrimetilamonio, for molecular biology, ≥99%
Sigma-Aldrich
Bromuro de hexadeciltrimetilamonio, BioXtra, ≥99%
Sigma-Aldrich
L-Lysine monohydrochloride, from non-animal source, meets EP, JP, USP testing specifications, suitable for cell culture, 98.5-101.0%
Sigma-Aldrich
Peróxido de hidrógeno solution, contains ~200 ppm acetanilide as stabilizer, 3 wt. % in H2O
Sigma-Aldrich
Guaiacol, oxidation indicator
Millipore
Peróxido de hidrógeno solution, 3%, suitable for microbiology
Sigma-Aldrich
Guaiacol, natural, ≥99%, FG
Sigma-Aldrich
Bromuro de hexadeciltrimetilamonio, BioUltra, for molecular biology, ≥99.0% (AT)
Sigma-Aldrich
L-Lysine monohydrochloride, reagent grade, ≥98% (HPLC)
Sigma-Aldrich
Bromuro de hexadeciltrimetilamonio, ≥96.0% (AT)
USP
Bromuro de hexadeciltrimetilamonio, United States Pharmacopeia (USP) Reference Standard
Supelco
Guaiacol, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Bromuro de hexadeciltrimetilamonio, suitable for ion pair chromatography, LiChropur
Supelco
L-Lysine monohydrochloride, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
L-Lysine monohydrochloride, BioUltra, ≥99.5% (AT)
Lysine hydrochloride, European Pharmacopoeia (EP) Reference Standard
Supelco
L-Lysine hydrochloride solution, 100 mM amino acid in 0.1 M HCl, analytical standard
Supelco
Bromuro de hexadeciltrimetilamonio, analytical standard
Supelco
L-Lysine monohydrochloride, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland
SAFC
Bromuro de hexadeciltrimetilamonio, USP/NF
Guaiacol, European Pharmacopoeia (EP) Reference Standard