Skip to Content
Merck
  • Characterization of two members among the five ADP-forming acyl coenzyme A (Acyl-CoA) synthetases reveals the presence of a 2-(Imidazol-4-yl)acetyl-CoA synthetase in Thermococcus kodakarensis.

Characterization of two members among the five ADP-forming acyl coenzyme A (Acyl-CoA) synthetases reveals the presence of a 2-(Imidazol-4-yl)acetyl-CoA synthetase in Thermococcus kodakarensis.

Journal of bacteriology (2013-10-29)
Tomotsugu Awano, Anja Wilming, Hiroya Tomita, Yuusuke Yokooji, Toshiaki Fukui, Tadayuki Imanaka, Haruyuki Atomi
ABSTRACT

The genome of Thermococcus kodakarensis, along with those of most Thermococcus and Pyrococcus species, harbors five paralogous genes encoding putative α subunits of nucleoside diphosphate (NDP)-forming acyl coenzyme A (acyl-CoA) synthetases. The substrate specificities of the protein products for three of these paralogs have been clarified through studies on the individual enzymes from Pyrococcus furiosus and T. kodakarensis. Here we have examined the biochemical properties of the remaining two acyl-CoA synthetase proteins from T. kodakarensis. The TK0944 and TK2127 genes encoding the two α subunits were each coexpressed with the β subunit-encoding TK0943 gene. In both cases, soluble proteins with an α2β2 structure were obtained and their activities toward various acids in the ADP-forming reaction were examined. The purified TK0944/TK0943 protein (ACS IIITk) accommodated a broad range of acids that corresponded to those generated in the oxidative metabolism of Ala, Val, Leu, Ile, Met, Phe, and Cys. In contrast, the TK2127/TK0943 protein exhibited relevant levels of activity only toward 2-(imidazol-4-yl)acetate, a metabolite of His degradation, and was thus designated 2-(imidazol-4-yl)acetyl-CoA synthetase (ICSTk), a novel enzyme. Kinetic analyses were performed on both proteins with their respective substrates. In T. kodakarensis, we found that the addition of histidine to the medium led to increases in intracellular ADP-forming 2-(imidazol-4-yl)acetyl-CoA synthetase activity, and 2-(imidazol-4-yl)acetate was detected in the culture medium, suggesting that ICSTk participates in histidine catabolism. The results presented here, together with those of previous studies, have clarified the substrate specificities of all five known NDP-forming acyl-CoA synthetase proteins in the Thermococcales.

MATERIALS
Product Number
Brand
Product Description

Imidazole, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Imidazole, BioUltra, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Imidazole, ReagentPlus®, 99%
Sigma-Aldrich
Imidazole sodium derivative, technical grade
Sigma-Aldrich
Imidazole, ≥99% (titration), crystalline
Sigma-Aldrich
Imidazole hydrochloride
Sigma-Aldrich
Imidazole, for molecular biology, ≥99% (titration)
Supelco
Imidazole, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Imidazole, BioUltra, ≥99.5% (GC)
Sigma-Aldrich
Imidazole, ACS reagent, ≥99% (titration)
Sigma-Aldrich
Imidazole, puriss. p.a., ≥99.5% (GC)
Sigma-Aldrich
Imidazole, for molecular biology, ≥99% (titration), free-flowing, Redi-Dri
Sigma-Aldrich
Imidazole, ReagentPlus®, 99%, Redi-Dri, free-flowing
Sigma-Aldrich
Adenosine 5′-diphosphate, ≥95% (HPLC)
Sigma-Aldrich
Imidazole buffer Solution, BioUltra, 1 M in H2O