Skip to Content
Merck
All Photos(1)

Key Documents

663913

Sigma-Aldrich

N,N′-Dioctyl-3,4,9,10-perylenedicarboximide

98%

Synonym(s):

PTCDI-C8

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C40H42N2O4
CAS Number:
Molecular Weight:
614.77
MDL number:
UNSPSC Code:
12352103
PubChem Substance ID:
NACRES:
NA.23

Quality Level

Assay

98%

form

solid

mp

>300 °C

λmax

526 nm

fluorescence

λem ≤533 nm in chloroform

semiconductor properties

N-type (mobility=1.7 cm2/V·s)

SMILES string

CCCCCCCCN1C(=O)c2ccc3c4ccc5C(=O)N(CCCCCCCC)C(=O)c6ccc(c7ccc(C1=O)c2c37)c4c56

InChI

1S/C40H42N2O4/c1-3-5-7-9-11-13-23-41-37(43)29-19-15-25-27-17-21-31-36-32(40(46)42(39(31)45)24-14-12-10-8-6-4-2)22-18-28(34(27)36)26-16-20-30(38(41)44)35(29)33(25)26/h15-22H,3-14,23-24H2,1-2H3

InChI key

YFGMQDNQVFJKTR-UHFFFAOYSA-N

Application

PTCDI-C8 can be used as an organic semiconductor to fabricate a wide range of opto-electronic based devices such as light emitting diodes, photovoltaic cells, and field effect transistors.

Pictograms

Exclamation mark

Signal Word

Warning

Hazard Statements

Hazard Classifications

Eye Irrit. 2 - Skin Irrit. 2 - STOT SE 3

Target Organs

Respiratory system

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

N Hiroshiba et al.
Physical chemistry chemical physics : PCCP, 13(13), 6280-6285 (2011-03-02)
Photo-induced carrier processes at the heteromolecular interface of N,N'-dioctyl-3,4,9,10-perylenedicarboximide (PTCDI-C(8)) and quaterrylene (QT) on a molecular scale were examined by optical and photoelectron spectroscopy. The energy level alignments of the molecules were determined by X-ray photoelectron spectroscopy and the optical
Three-dimensional molecular packing of thin organic films of PTCDI-C8 determined by surface X-ray diffraction.
Krauss TN, et al.
Langmuir, 24(22), 12742-12744 (2008)
Organic photovoltaic devices based on pentacene/N, N′ -dioctyl-3, 4, 9, 10-perylenedicarboximide heterojunctions.
Karak S, et al.
Organic Electronics, 10(5), 1006-1010 (2009)
Xiali Zhang et al.
Nanoscale horizons, 5(7), 1096-1105 (2020-05-20)
Ultrathin organic semiconductor (OSC) crystalline films hold the promise of achieving high-performance, flexible, and transparent organic electronic devices. However, fast and high-throughput solution deposition of uniform pinhole-free ultrathin OSC crystalline films over a large area remains a challenge. Here, we
Graphene-organic hybrid electronics.
Kim C and Kymissis I
Journal of Material Chemistry C, 5(19), 4598-4613 (2017)

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service