Recommended Products
Assay
97%
bp
89-92 °C/2 mmHg (lit.)
mp
60-63 °C (lit.)
SMILES string
CC(C)NC(=O)C=C
InChI
1S/C6H11NO/c1-4-6(8)7-5(2)3/h4-5H,1H2,2-3H3,(H,7,8)
InChI key
QNILTEGFHQSKFF-UHFFFAOYSA-N
Looking for similar products? Visit Product Comparison Guide
General description
N-Isopropylacrylamide (NIPAM) is a biocompatible monomeric unit that can be used in the formation of stimuli responsive polymers due to its temperature sensitive properties, which include temperature-based volumetric and phase changes. These properties change when the temperature of the solution reaches a lower critical solution temperature (LCST).
Application
Monomer used in the preparation of thermally sensitive, water-swellable hydrogels.
NIPAM can be used to prepare poly(NIPAM) based thermosetting polymers, which can be used for a variety of applications such as tissue engineering, cell culture, biomedical coating, drug delivery, and muscle regeneration.
Signal Word
Danger
Hazard Statements
Precautionary Statements
Hazard Classifications
Acute Tox. 4 Oral - Eye Dam. 1
Storage Class Code
11 - Combustible Solids
WGK
WGK 3
Personal Protective Equipment
dust mask type N95 (US), Eyeshields, Gloves
Certificates of Analysis (COA)
Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Customers Also Viewed
Bio-Instructive Scaffolds for Muscle Regeneration: NonCrosslinked Polymers
Bio-Instructive Scaffolds for Musculoskeletal Tissue Engineering and Regenerative Medicine, 34(9), 161-186 (2017)
Temperature-responsive polymers for cell culture and tissue engineering applications
Switchable and Responsive Surfaces and Materials for Biomedical Applications, 32(5), 203-233 (2015)
Characterisation of biomedical coatings
Coatings for Biomedical Applications, 32(5), 176-220 (2012)
Surfactant Science Series, 115, 117-117 (2003)
Biomacromolecules, 13(11), 3877-3886 (2012-09-28)
Polymeric drug nanocarriers integrated with diagnostic and sensing functions are capable of in situ monitoring the biodistribution of chemotherapeutic drugs and imaging/contrasting agents, which enables the establishment of image-guided personalized cancer therapeutic protocols. Responsive multifunctional theranostic nanocarriers possessing external stimuli-tunable
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service