Skip to Content
Merck
  • Evaluation of manganese uptake and toxicity in mouse brain during continuous MnCl2 administration using osmotic pumps.

Evaluation of manganese uptake and toxicity in mouse brain during continuous MnCl2 administration using osmotic pumps.

Contrast media & molecular imaging (2012-06-01)
M R Sepúlveda, T Dresselaers, P Vangheluwe, W Everaerts, U Himmelreich, A M Mata, F Wuytack
ABSTRACT

Manganese is a vital element and cofactor of many key enzymes, but it is toxic at high levels, causing pronounced disturbances in the mammalian brain. Magnetic resonance imaging (MRI) studies using manganese ions as a paramagnetic contrast agent are often limited by the neurotoxicity of Mn(2+) . In this work, we have explored a new in vivo model to study Mn(2+) uptake, distribution and neurotoxicity in mice by subcutaneous implantation of mini-osmotic pumps delivering MnCl(2) continuously for 21 days. Fractionated injections can reduce the toxicity; however, constant administration at very low doses using osmotic pumps caused a substantial effect on the T(1) contrast in MRI while reducing toxicity. Manganese-enhanced MRI documented fast but reversible Mn(2+) deposition largely in glomerular and mitral cell layers of the olfactory bulb, in the CA3 area of the hippocampus, and in the gray matter of the cerebellum. Mn(2+) accumulated as early as the first days after implantation, with a fast dispersal 9 days after stopping a 12-days Mn(2+) exposure. Prominent Mn(2+) accumulation was also seen in salivary glands and in the endocrine thyroid and posterior pituitary gland. These structures with enhanced Mn(2+) accumulation correlated well with those showing high expression of the secretory pathway Ca(2+) /Mn(2+) -ATPase (SPCA1), i.e. a transporter that could take part in Mn(2+) detoxification. Our new experimental model for continuous low-dosage administration of Mn(2+) is an easy alternative for enhancing Mn(2+) -based contrast in MEMRI studies, and might provide insight into the etiology of neuropathologies resulting from chronic Mn(2+) exposure in vivo.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Manganese(II) chloride tetrahydrate, BioUltra, for molecular biology, ≥99.0% (KT)
Sigma-Aldrich
Manganese(II) chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Manganese(II) chloride, powder and chunks, ≥99% trace metals basis
Sigma-Aldrich
Manganese(II) chloride, AnhydroBeads, −10 mesh, 99.99% trace metals basis
Sigma-Aldrich
Manganese(II) chloride, beads, 98%
Sigma-Aldrich
Manganese(II) chloride tetrahydrate, BioReagent, suitable for insect cell culture
Sigma-Aldrich
Manganese(II) chloride tetrahydrate, meets USP testing specifications
Sigma-Aldrich
Manganese(II) chloride solution, BioReagent, for molecular biology, storage temp.:room temp
Sigma-Aldrich
Manganese(II) chloride tetrahydrate, ReagentPlus®, ≥99%
Sigma-Aldrich
Manganese(II) chloride tetrahydrate, ACS reagent, ≥98%
Sigma-Aldrich
Manganese(II) chloride tetrahydrate, 99.99% trace metals basis
Sigma-Aldrich
Manganese(II) chloride 0.1 M solution