Tropinone reductases (TRs) are essential enzymes in the tropane alkaloid biosynthesis, providing either tropine for hyoscyamine and scopolamine formation or providing pseudotropine for calystegines. Two cDNAs coding for TRs were isolated from potato (Solanum tuberosum L.) tuber sprouts and expressed
Tropinone reductase-II (TR-II) catalyzes the NADPH-dependent reduction of the carbonyl group of tropinone to a beta-hydroxyl group. The crystal structure of TR-II complexed with NADP+ and pseudotropine (psi-tropine) has been determined at 1.9 A resolution. A seven-residue peptide near the
Two stereospecific oxidoreductases constitute a branch point in tropane alkaloid metabolism. Products of tropane metabolism are the alkaloids hyoscyamine, scopolamine, cocaine, and polyhydroxylated nortropane alkaloids, the calystegines. Both tropinone reductases reduce the precursor tropinone to yield either tropine or pseudotropine.
Zeitschrift fur Naturforschung. C, Journal of biosciences, 59(11-12), 863-867 (2005-01-26)
Hairy root cultures of Brugmansia suaveolens were set up by infection of root tips with Agrobacterium rhizogenes. The successful transformation was confirmed by analysing rolC and virC genes using polymerase chain reaction (PCR). Hairy root cultures were employed to study
Heteroaromatic carboxylic esters of (nor)tropine were synthesized. Tropine esters displaced [(3)H]strychnine binding to glycine receptors of rat spinal cord with low Hill slopes. Two-site displacement resulted in nanomolar IC(50,1) and micromolar IC(50,2) values, and IC(50,2)/IC(50,1) ratios up to 615 depending
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.