In DNA triple helices, methylation at C-5 of thymine or cytosine is reported to have similar stabilizing effects for both bases. Here we show, however, that methylation of the same positions in RNA triplexes has distinctly different effects than in
Journal of molecular biology, 274(4), 505-518 (1998-01-07)
Almost all transfer RNA molecules sequenced so far contain two universal modified nucleosides at positions 54 and 55, respectively: ribothymidine (T54) and pseudouridine (psi 55). To identify the tRNA elements recognized by tRNA:m5uridine-54 methyltransferase and tRNA:pseudouridine-55 synthase from the yeast
Methyltransferases that use S-adenosylmethionine (AdoMet) as a cofactor to catalyse 5-methyl uridine (m(5)U) formation in tRNAs and rRNAs are widespread in Bacteria and Eukaryota, and are also found in certain Archaea. These enzymes belong to the COG2265 cluster, and the
Methylation of tRNA on the four canonical bases adds structural complexity to the molecule, and improves decoding specificity and efficiency. While many tRNA methylases are known, detailed insight into the catalytic mechanism is only available in a few cases. Of
The Journal of biological chemistry, 277(11), 8835-8840 (2002-01-10)
An Escherichia coli open reading frame, ygcA, was identified as a putative 23 S ribosomal RNA 5-methyluridine methyltransferase (Gustafsson, C., Reid, R., Greene, P. J., and Santi, D. V. (1996) Nucleic Acids Res. 24, 3756-3762). We have cloned, expressed, and
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.