Skip to Content
MilliporeSigma
All Photos(2)

Key Documents

V900493

Sigma-Aldrich

Xylitol

Vetec, reagent grade, ≥99%

Synonym(s):

Xylite

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
HOCH2[CH(OH)]3CH2OH
CAS Number:
Molecular Weight:
152.15
Beilstein/REAXYS Number:
1720523
EC Number:
MDL number:
UNSPSC Code:
12352201
PubChem Substance ID:
Pricing and availability is not currently available.

grade

reagent grade

product line

Vetec

assay

≥99%

mp

94-97 °C (lit.)

SMILES string

OC[C@@H](O)[C@H](O)[C@@H](O)CO

InChI

1S/C5H12O5/c6-1-3(8)5(10)4(9)2-7/h3-10H,1-2H2/t3-,4+,5+

InChI key

HEBKCHPVOIAQTA-SCDXWVJYSA-N

Looking for similar products? Visit Product Comparison Guide

Other Notes

To gain a comprehensive understanding of our extensive range of Sugar alcohols for your research, we encourage you to visit our Carbohydrates Category page.

Legal Information

Vetec is a trademark of Merck KGaA, Darmstadt, Germany

Storage Class

11 - Combustible Solids

wgk_germany

WGK 3

flash_point_f

Not applicable

flash_point_c

Not applicable


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Kiet A Ly et al.
Pediatric dentistry, 28(2), 154-163 (2006-05-20)
The purpose of this report was to provide an overview of xylitol and other polyol sweeteners and dental caries for clinicians and to discuss current applications for dental practice and potential community-based public health interventions. Xylitol, like other polyol sweeteners
Tom Birger Granström et al.
Applied microbiology and biotechnology, 74(2), 277-281 (2007-01-12)
The rare sugar xylitol is a five-carbon polyol (pentitol) that has beneficial health effects. Xylitol has global markets and, therefore, it represents an alternative to current dominant sweeteners. The research on microbial reduction of D-xylose to xylitol has been focused
Xiaoxiao Guo et al.
Bioresource technology, 128, 547-552 (2012-12-06)
In this study, an integrated xylitol production pathway, directly using xylan as the substrate, was constructed in Candida tropicalis BIT-Xol-1 which could efficiently convert xylose into xylitol. In order to consolidate this bioprocessing, a β-1,4-xylanase gene (atn) and a β-xylosidase
Lilian Raquel Hickert et al.
Bioresource technology, 143, 112-116 (2013-06-25)
Co-fermentation and simultaneous saccharification of rice hull hydrolysate (RHH) were investigated for the production of ethanol and xylitol by Saccharomyces cerevisiae, Spathaspora arborariae, or the combination of both. In bioreactor cultures under oxygen limitation, S. cerevisiae was capable of metabolizing
Eun Joong Oh et al.
Metabolic engineering, 15, 226-234 (2012-10-30)
As Saccharomyces cerevisiae cannot utilize xylose as a carbon source, expression of XYL1 coding for xylose reductase (XR) from Scheffersomyces (Pichia) stipitis enabled production of xylitol from xylose with a high yield. However, insufficient supply of NAD(P)H for XR and

Questions

Reviews

No rating value

Active Filters

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service