The journal of physical chemistry. A, 112(47), 12220-12227 (2008-11-05)
Nonresonant Raman spectra and conformational stability are studied for thioanisole (TA) and substituted analogues [4-XTA, X = NO(2) (1), CN (2), H (3), CH(3) (4), and NH(2) (5)] at the 4-position. The ring-substituent (SCH(3)) vibrational modes of out-of-plane bending and
Chemical reactions that occur in the ground electronic state are described well by invoking the Born-Oppenheimer approximation, which allows their development to be rationalized by nuclear rearrangements that smoothly traverse an adiabatic potential energy surface. The situation is different, however
To better understand the effect of thioether coordination in copper-O(2) chemistry, the tetradentate N(3)S ligand L(ASM) (2-(methylthio)-N,N-bis((pyridin-2-yl)methyl)benzenamine) and related alkylether ligand L(EOE) (2-ethoxy-N,N-bis((pyridin-2-yl)methyl)ethanamine) have been studied. The corresponding copper(I) complexes, [(L(ASM))Cu(I)](+) (1a) and [(L(EOE))Cu(I)](+) (3a), were studied as were the
Journal of the American Chemical Society, 131(36), 12892-12893 (2009-08-26)
Magnetic nanoparticles (MNPs) with a core diameter of 30 nm comprising several iron oxide crystals, a poly(glycidyl methacrylate) (PGMA) shell with a thickness of 30 nm, and a surface coated with chloroperoxidase (CPO) were facilely fabricated as a nanobiocatalyst for
Physical chemistry chemical physics : PCCP, 14(37), 12800-12806 (2012-08-10)
The electronic and structural features of (oxo)manganese(V) corroles and their catalyzed oxygen atom transfers to thioanisole in different spin states have been investigated by the B3LYP functional calculations. Calculations show that these corrole-based oxidants and their complexes with thioanisole generally
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.