D-xylulose is a monosaccharide, converted from xylitol in the glucuronate pathway.
Other Notes
To gain a comprehensive understanding of our extensive range of Monosaccharides for your research, we encourage you to visit our Carbohydrates Category page.
It is important to understand if, and to what extent, the pig can utilize xylose as an energy source if xylanase releases free xylose in the small intestine. The experimental objectives were to determine the effects of industry-relevant dietary xylose
Journal of the American Chemical Society, 138(9), 3012-3021 (2016-02-18)
We report the construction of an artificial enzyme cascade based on the xylose metabolic pathway. Two enzymes, xylose reductase and xylitol dehydrogenase, were assembled at specific locations on DNA origami by using DNA-binding protein adaptors with systematic variations in the
A K270R mutation of xylose reductase (XR) was constructed by site-direct mutagenesis. Fermentation results of the F106X and F106KR strains, which carried wild type XR and K270R respectively, were compared using different substrate concentrations (from 55 to 220 g/L). After
Dicarbonyl/L-xylulose reductase (DCXR) converts l-xylulose into xylitol, and reduces various α-dicarbonyl compounds, thus performing a dual role in carbohydrate metabolism and detoxification. In this study, we identified DHS-21 as the only DCXR ortholog in Caenorhabditis elegans. The dhs-21 gene is
Monoethylene glycol (MEG) is an important commodity chemical with applications in numerous industrial processes, primarily in the manufacture of polyethylene terephthalate (PET) polyester used in packaging applications. In the drive towards a sustainable chemical industry, bio-based production of MEG from
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.