Fructose-6-phosphate (F6P) is a glycolytic pathway intermediate produced by the isomerization of glucose-6-phosphate by phosphoglucose isomerase. F6P is further phosphorylated to fructose 1,6-biphosphate which is subsequently cleaved to glyceraldehyde phosphate and dihydroxyacetone phosphate. F6P can also be shunted from glycolysis to the non-oxidative branch of the pentose phosphate pathway as a means of generative pentose phosphates for nucleotide synthesis. F6P levels are elevated in rapidly proliferating cells such as cancer cells. The Fructose-6-phosphate Assay Kit is a highly sensitive and simple fluorescence-based method of quantifying F6P in a variety of samples.
Application
Fructose-6-Phosphate Assay Kit has been used to measure fructose-6-phosphate (F-6-P)[1][2] and glucose-6-phosphate (G6P).[2]
Suitability
Suitable for quantifying Fructose-6-Phosphate in a variety of samples
Principle
Fructose-6-phosphate concentration is determined by a coupled enzyme reaction, which results in a fluorometric (λex = 535 nm/λem = 587 nm) product, proportional to the fructose-6-phosphate present. Typical sensitivities for this kit are 0.01 to 0.5 nmoles of F6P.
Transketolase (TKT) which is an important metabolic enzyme in the pentose phosphate pathway (PPP) participates in maintaining ribose 5-phosphate levels. TKT is necessary for maintaining cell growth. However, we found that in addition to this, TKT can also affect tumor
Proteomic and biochemical basis for enhanced growth yield of Enterobacter sp. LCR1 on insoluble phosphate medium.
Glycolysis emerges as a new therapeutic target for malignancies. The inhibition of glycolytic activator, PFKFB3, repairs tumor endothelial cell function, and normalizing the tumor microenvironment. We aimed to investigate the significance of PFKFB3 in HCC, and the effects of the
Abnormal expression of O-Linked β-N-acetylglucosamine (O-GlcNAc) and β-catenin is a general feature of cancer and contributes to transformed phenotypes. In this study, we identified the interaction between O-GlcNAc and β-catenin, and explored their effects on the progression of liver cancer.
Warburg effect enhances glucose to lactate conversion in tumor cells, regardless of oxygen levels; impacting cancer metabolism since 1924.
Questions
Reviews
★★★★★ No rating value
Active Filters
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.